This project uses virtual reality (VR) and other visualization tools to model the mechanical and quantum mechanical properties of the partons inside the proton. The quark and gluon dynamics are responsible for more than 98% of all mass around us. Still, it is not clear how this motion manifests and how the energy density and composition of the proton changes under various states. For example, the proton can be polarized so the spin is oriented along some particular axis. This will naturally change the dynamics and the partons state as well. Quarks and gluons can spin, and can have linear and circular motion, and can appear and disappear continuously and sporadically. This project has two overarching goals. One is to visualize the complex internal structure of the proton. We intend to do this with Unity-based VR with help from other tools like Blender, and Niagara from unreal engine 5, and other ways to test and explore visualizing this information. The second goal is to develop a detailed and accurate simulation of these dynamics and the proton's internal structure using data from experiments, lattice QCD, and phenomenology. These simulations should be able to evolve in time and should be able to contain much of what we presently understand about the proton's insides, like charge variations, flux tube geometry, the density of sea-quarks, and gluons at various Q2 and momentum fractions. In the end, these two goals should be merged and the visualization studio should be combined with the simulation and modeling package.
You can learn about some aspects of the experimental effort and the piecing these results together here:
A write-up by Jinge Zhou discusses some hypothetical ways to address some of the goals of the Unity Project:
A high-level write-up to introduce some of the basic goals of the Unity Project:
The repository of the project is here:
https://github.com/uva-spin/VR-Unity/
The group discord page is here:
https://discord.com/channels/939266832790065153/939266833352097804