Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
The top mounting plate can be positioned whenever the techs come to do it. 
The machining and materials from UVA have arrived and are ready.  This
includes the bottom target tri-winged frame and the new aluminum feet
holders.  The threaded feet are also finished from FNAL.  The dowel pins
should be done soon.  After this the lifter frame should go in and then
the magnet can in principle go into position.  In order for us to be ready
for that we want new PTFE seals which are more radiation resistant.  We
need to clean and prep the magnet and can, and to do the docdock survey.
1.) Survey on docdock with full system open (no nose, no nitrogen shield, no
beam windows).  Survey the magnet aperture, the target insert along X
only, and the outside fiducials (can and top flange).  The primary goal of
this survey is to generate fiducials on the can and top flange to help
align when going into position in the cave.

...

For SpinQuest it will be difficult to get the positioning of the target
perfectly aligned with the beam.  This is because all fiducials that we
can get while the system is warm and open will change once we are running
with liquid helium.  We have X, Y positioning measured from averaged
vertex reconstruction but this takes at least 1 month of data to produce,
and this will only give the mean with a very large variance.  This means
we need to get the information we need from the survey and the final set
of surveys will need to contain some cold target information.  The
precision in the target cell to beamline positioning needs to be good to
mitigate large absolute errors while running.   This is estimated to be on
the sub-millimeter level (based on simulations being confirmed).  There
are several factors that can lead to false asymmetries relating to this
precision.  There can be a bias produced in the detector if there the beam
is off center.  There can be less polarized scattering if the beam is not
aligned and missing part of the target (beam profile dependent, also being
checked).  There can be greater scattering off the aluminum ladder on one
side as compared to the other.  Most of these manifest from X being off
but if Y is off over 1 mm then the same issues start to manifest with the
ladder as well but this may not result in false asymmetry and only result
in additional heat load to the coils.

During our discussions with the survey crew it was suggested to install
transparent windows so we could do an optical survey on the magnet and
target cells while cold.  This would be great to do but I do not think
this is possible at FNAL.  I don't believe we would ever pass a safety
review to do that.  The next best option is to do surveys using liquid
nitrogen.  We could calculate the level of contraction for both LN2 and
LHe.  We can then measure the contraction during an open system survey
with LN2 in the magnet and in a nose with a window on it.  The set of
survey would go like this:

1.) Survey on docdock with fully open system (no nose, no nitrogen shield, no
beam windows).  Survey the magnet aperture, the target insert along X
only, and the outside fiducials (can and top flange).  The primary goal of
this survey is to generate fiducials on the can and top flange to help
align when going into position in the cave.  This part of the survey should

...

Use the leveling pads to level the magnet on the docdock before survey.  This survey

...

is plumb not the top flange is slightly off level.  Working on the docdock for
this survey will have the advantage of space unlike in the cave.  We can also

...