...
FluxTubes: Quarks are connected via the flux tubetubes. The flux tube can be modeled as just a string holding the valence quarks together. The three valence quarks should be orbiting around the center of the proton with a momentum that wants to send them flying off but the string tension of the flux tube keeps them bound to each other. The string tension and the valence quark momentum should be control parameters that can be changed in the UI. When the proton is polarized the orbital motion is correlated to the proton's spin when the proton is not polarized the spin direction is chaotic. The up quark and the down quark rotate in opposite directions. The up quark has a mass of about 2 MeV while the down quark has a mass of about 4.8 MeV so the up quark is about 2.4 times faster than the down quark. The momentum of the quarks is faster when the quarks are closer together in the center of the proton and slow when they are farther apart. The flux tube should get smaller (narrower) as its stretches and the tension tighten. The flux tube is a three-dimensional geometry that has an empty volume inside. Gluons can pass through the volume changing the color of the quarks as they make an exchange. This happens exactly the same in both valence and sea quarks. The valence will always have three flux tube arms while the sea can have two or three or more but normally only two.
Gluons: Each Gluon has two colors as indicated on the Wikipedia page under Color Charge. All combinations of gluon colors should be represented. There are three colors and three anti-colors red, gluon, blue, and anti-red, anti-green, and anti-blue. You can use the same color representation as what you see on Wikipedia. Each gluon can float around and interact with other gluons and quarks. Gluons can do nothing, attract one another and annihilate turning into two photons. They can only annihilate if the total color charge of the two gluons is color-neutral. Only gluons that can form white will interact. For example, a red and anti-red can interact with another red and anti-red gluon. Three gluons all of different colors can form two color-neutral states. They In this way, gluons can also interact with each other to make pure gluon states. Other than that all they do is swarm around and interact with the quarks. When they make contact, they can bounce off each other changing from attracting to repelling, or they can pass right through each other. When the gluon density is large more sea quarks pop in and out of the vacuum. Space is full of fluctuating waves/swarms of gluons increasing and decreasing the likelihood of QCD making something happen. The gluons continuously pop in and out of existence but the swarm is always present. As the flux tubes move in space they clear out the fluctuating gluons in the vacuum. The probability of gluon sea-quark interaction is inversely proportional to the sea-quark virtuality.
Quarks: The quarks are charged so besides the color force there is an electromagnetic force as well. This is true for the sea quarks and valence quarks. The Up quark has a charge of +2/3, and the Down quark is -1/3. This is important in the physics of their dynamics because when charges move, they make magnetic fields. The force from the electromagnetic charge scales as 1/r^2, where r is the distance between the quarks (charges). The color force on the other hand does not diminish as fast over distance, it is the same between quarks but will normally only act between two (sea-quarks) or three (valence quarks). The strength of the color force is roughly 137 times that of the electromagnetic force. When the proton is polarized the orbital motion is correlated to the proton's spin when the proton is not polarized the spin direction is chaotic. The up quark and the down quark rotate in opposite directions. The up quark has a mass of about 2 MeV while the down quark has a mass of about 4.8 MeV so the up quark is about 2.4 times faster than the down quark. The momentum of the quarks is faster when the quarks are closer together in the center of the proton and slow when they are farther apart. The valence quarks orbit the center of the proton with Up and Down going in different directions but also following chaotic and wild paths when unpolarized. Polarized protons have much more order with the valence quarks always orbiting the central axis. The sea quarks can also orbit the central axis and follow and interact with the valence quarks. There are sum-rules that govern the exchange between orbital angular momentum, and partonic spin, and how all of this is shared between all the pieces.
Models of Dynamics:
Meson Cloud Model: At any given instant, the proton might really be a neutron (ddu) plus a positively charged pion (ud- ud-)—or another proton (uud) plus a neutral pion. This violates energy conservation but it is allowed, for a fleeting moment, by the Heisenberg uncertainty principle. By adding up the contributions from all the possible channels, the theorists can model the composition of the sea.
...