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E906 Data Event Generation

E906 Event
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Full Monte-Carlo Event Generation

e Take Monte Carlo simulated

particle tracks and combine them

into more complicated events

o Random number of full tracks (Poisson

distribution with mean 2)

o Possibly add dimuon track from target

(probability 25%)

o Add single station tracklets to event to

make data noisy
e Add noise and cluster hits

o Edge hits
o Electronic Noise
o Delta Rays

Generated Event

200

180

160

140

120

100

80

60

‘\\\‘III]

\

40

20

OE\I—-I—"{IJJJll\I

u'
|

\

[
i f y

lII
I

0

5

10

—_
(6]
n
o

Generated Event

Entries 6000
Mean x 14.46
Meany 78.98
Std Devx  9.398
StdDevy 46.62
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relevant elements
I 1

false negatives true negatives

Measuring Categorization e o O o

e [hree main measurements:

o Precision
o Recall
o F-measure

e Precision means the data passed is
more “pure”

e Recall means we miss less
interesting events

retrieved elements

e F-measure is the harmonic mean of e | Penromiet
the two.
Precision = ——— Recall = ——
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Event Filtering

e Feed raw events straight into a
binary classifier — worth further
analysis or not.

e That definition can change based

on needs.
o Contains any muons
o Contains two muons
o Contains a dimuon pair
o Contains a dimuon pair from the target

e Uses convolutional neural networks
to look for particle tracks in events.
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Event Filtering (continued)

e Precision and recall of filtering

depend on the goal of the network.

o  With high confidence filter, we can
achieve >95% precision.

o  With lower confidence filter, we can get
a recall >90%, at the cost of precision.

o False-positives and false-negatives are
a balancing act, and different scenarios
will call for different balances.
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Event Filtering Performance

Full Monte-Carlo Generation
(20% signal-to-noise ratio)

98% accuracy

Low false negative settings:
0.69 precision, 0.91 recall, 0.78 F-measure

High false negative settings:
0.95 precision, 0.70 recall, 0.81 F-measure

E906 Data with Dimuon Injection
(20% signal-to-noise ratio)

91% accuracy

Low false negative settings:
0.71 precision, 0.88 recall, 0.79 F-measure

High false negative settings:
0.97 precision, 0.66 recall, 0.78 F-measure

Evaluation time for 30,000 events (on my machine):
TensorFlow evaluation: 3.75 seconds
ONNX evaluation: 0.51 seconds



Hit Filtering

Generated Event

Generated Event
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Track Finding

e Splits dimuon events into two separate muon tracks.

e Uses convolutional neural network with pooling to identify tracks through
detectors and identify which hits correspond to each other.

e These hits can then be paired with their corresponding drift information.

— Signal Hit
— Background Hit
— Signal Hit

t] D — Signal Hit

FULLY
CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CONNECTED SOFTMAX

& i

FEATURE LEARNING CLASSIFICATION




