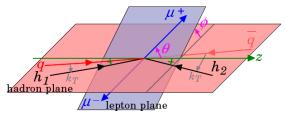
フェルミ研 SeaQuest 実験による 陽子+鉄からのドレル・ヤン反応の角度分布の測定

日本物理学会 2024 年春季大会 2024/03/21, 21pU1-3

中野健一*,後藤雄二,澤田真也,柴田利明,永井慧,宮地義之, 他 SeaQuest collaboration

* バージニア大

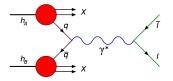
目次

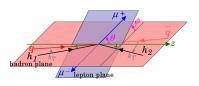

- 1. ドレル・ヤン反応の角度分布
 - 陽子+鉄を用いた測定の意義
- 2. SeaQuest 実験による測定
 - 実験セットアップ ビームダンプを標的物質として利用
 - データ解析
- 3. 測定結果 SeaQuest preliminary
 - \circ 角度分布の係数 (λ, μ, ν) vs ミューオン対の横運動量
 - 他の測定結果との比較
- 4. まとめと展望

ハドロン+ハドロン → レプトン対の角度分布

- 深非弾性散乱 (DIS) の構造関数と同様の定式化
 - パートン模型やドレル・ヤン反応に限定されない
 - Chi-Sing Lam & Wu-Ki Tung, PRD 18, 2447 (1978)

$$\begin{split} \frac{d\sigma}{d^4qd\Omega} &= \frac{1}{2} \frac{1}{(2\pi)^4} \frac{\alpha^2}{(Ms)^2} \Big(W_T (1 + \cos^2 \theta) - W_L (1 - \cos^2 \theta) \\ &\quad + W_\Delta \sin 2\theta \cos \phi + W_{\Delta\Delta} \sin^2 \theta \cos 2\phi \Big) \\ \frac{1}{\sigma} \frac{d\sigma}{d\Omega} &= \frac{3}{4\pi} \frac{1}{\lambda + 3} \left(1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi \right) \end{split}$$

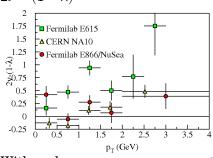

in Collins-Soper frame



Lam-Tung Relation

Drell-Yan angles in Collins-Soper frame

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega} = \frac{3}{4\pi}\frac{1}{\lambda+3}\left(1+\lambda\cos^2\theta+\mu\sin2\theta\cos\phi+\frac{\nu}{2}\sin^2\theta\cos2\phi\right)$$


• Lam-Tung relation:

$$1 - \lambda = 2\nu$$

- Spin-1/2 nature of quarks ... analogous to Callen-Gross relation in DIS
- No NLO corrections $(\mathcal{O}(\alpha_s))$
- \circ Small NNLO corrections ($\mathcal{O}(lpha_s^2)$)

固定標的実験による測定

• $2\nu - (1 - \lambda)$

- $\nu \dots \cos 2\phi$ dependence
 - 0.8 Fermilab E866/NuSea (proton)

 A CERN NA10 (pion)

 Fermilab E615 (pion)

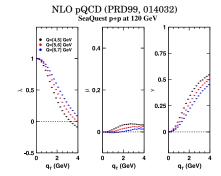
 0.4

 0.2

 0

 0.5 1 1.5 2 2.5 3 3.5 4

 P_T (GeV)


- With π^- beam
 - Lam-Tung relation violated!
 - \circ Large ν

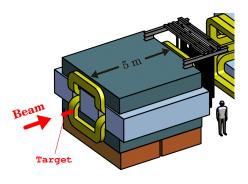
- With p beam
 - Lam-Tung relation violated weakly?
 - \circ Small u

SeaQuest 実験による角度分布の測定

- ドレル・ヤン反応の角度分布が含む情報
 - QCD 高次項の効果
 - $\circ \circ$ 角度分布係数 (λ, μ, ν) の大きさと P_T 依存性
 - Boer-Mulders 分布関数 h[⊥]
 - $\circ \circ$ With π beam: $\nu \propto [\text{valence } h_1^{\perp} \text{ in } \pi] \times [\text{valence } h_1^{\perp} \text{ in } p]$ •• With *p* beam:
 - $\nu \propto [\text{valence } h_1^{\perp} \text{ in } p] \times [\text{sea } h_1^{\perp} \text{ in } p]$
- SeaQuest 実験による測定
 - 陽子ビームの新たなデータ
 - 標的として(重)陽子に加えて原子核(鉄)を利用

 \Longrightarrow 既存の p+p (NuSea) や $\pi+W$ (NA10, E615) との総合解析

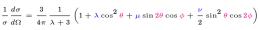
陽子ビーム @ FNAL

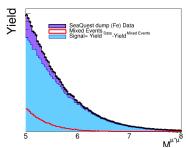

- Energy E = 120 GeV($\sqrt{s} = 15 \text{ GeV}$)
- Duty cycle
 - 5 sec for E906
 - 55 sec for ν exp.
- Bunch
 - o Length: 1 nsec
 - Interval: 19 nsec (53 MHz)
 - \circ 10¹³ protons in 5 sec

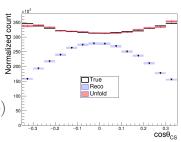
E906/SeaQuest Spectrometer

- Targets: LH₂, LD₂, C, Fe, W
- Focusing magnet (FMag) & Tracking magnet (KMag)
- Iron inside FMag, as hadron absorber & beam dump

SeaQuest 実験の鉄標的と鉄製ビームダンプ

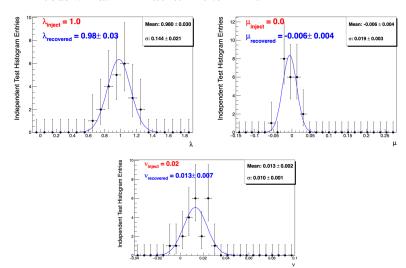


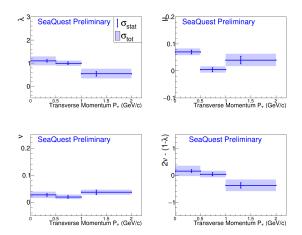

		厚さ (cm)	N of int. lengths	N of spills/cycle
 鉄標的		1.905	0.114	1
ビームダンプ	全体	500		23 (常時)
ビームダンプ	解析	50	2.992	


- 角度分布の抽出には高統計が望ましい
- 上流部分の50 cm のみを解析に使用 ⇒ 系統誤差の低減
- ビームダンプでの事象数は鉄標的と比べて 100 倍以上

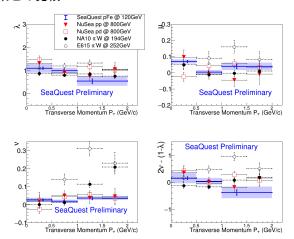
データ解析

- 全収集データの前半を本解析に使用
- ビームダンプの上流部分 (50 cm) で交差 する $\mu^+\mu^-$ 対を選択
- 不变質量分布 (M > 5 GeV)
 - ランダム BG の寄与は "Event Mixing" に より評価
- 検出効率 & 分解能の補正
 - Geant4 による検出器シミュレーション
 - Unfolding 法 (RooUnfold) による補正
- 角度分布フィット \Longrightarrow 係数 (λ, ν, μ) 抽出




補正手法の検証

- 数種類の角度分布係数 (λ, μ, ν) を仮定して MC イベントを生成
- イベント再構成 + 補正 ⇒ 抽出値と真値を比較


測定結果 ― 陽子+鉄からのドレル・ヤン反応の角度分布

• SeaQuest 実験の preliminary 結果

- \circ $\lambda \sim 1$, $\mu \sim 0.05$, $\nu \sim 0$
- \circ $0 < P_T < 2 \text{ GeV } で弱い <math>P_T$ 依存性

• 他の測定結果との比較

- \circ SeaQuest 実験の結果は特に μ と ν でより高精度
- \circ NuSea (E866) 実験の p+p & p+d の測定結果とほぼ一致

まとめと展望

- ドレル・ヤン反応の角度分布
 - QCD 高次項
 - 横運動量依存パートン分布関数 (Boer-Mulders 分布)
- SeaQuest 実験 @ フェルミ研
 - 陽子+原子核での新たな測定データ
 - ビームダンプ (FMag) での反応イベントによる高統計な結果
- 測定結果
 - $\lambda \sim 1$, $\mu \sim 0.05$, $\nu \sim 0$
 - \circ $0 < P_T < 2$ GeV で弱い P_T 依存性
 - 特に µ と ν でより高精度
 - NuSea (E866) 実験の p + p & p + d の測定結果とほぼ一致
- 展望
 - QCD 高次計算による理論予測値
 - 原子核効果の大きさの評価