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Outline
• NMR Measurements w/ (Liverpool) Q-Meter
• Simulations of ND3 and NH3 Lineshapes
• Neural Networks – what are these? Why?!
• Preliminary results
• Observations & Outlook



Nuclear Magnetic 
Resonance (NMR)
• Nuclear Magnetic Resonance, or NMR, is 

the physical phenomenon that occurs 
when a constant magnetic field is applied 
to nuclei at resonance which is perturbed 
by a weak oscillating magnetic field, 
which causes the nuclei to respond by 
producing an electromagnetic signal with 
a frequency characteristic of the 
magnetic field of the nuclei.

• NMR is being used to study the inner 
structure of various target material, e.g., 
ND3 and NH3



Q-Meter Based NMR

• Using a non-destructive continuous 
wave 
phase-sensitive detector
(ex., a Q-meter), is required to 
make accurate measurements of
polarization in scattering experiments



Q-Meter Based NMR

• Q-meter couples to the magnetic 
susceptibility of target material ( e.g. 
Solid Ammonia)

• Signal passes through λ/2 length 
cable (358.0 cm for 5T for NH3), so 
the Q-meter has a tuning range of λ/2 
to 7λ/2

• With a frequency range of 3-300 MHz

• Within these limits, we expect a 
linear relationship between 
Polarization and scale (ideal settings 
gives 2% relative error)



Deuteron Lineshape

• The Deuteron lineshape has two corresponding 
absorption lines, 𝐼𝐼+ and 𝐼𝐼−, which are associated 
with the analytical function for ε = ±1

• Absorption lines arise due to the 
interaction of the Deuteron’s quadrupole 
moment with the electric field gradient 
(EFG), which creates non-degenerate eigen 
states in the energy levels.

• Quadrupole splitting  two overlapping 
absorption lines in the NMR spectra (Pake
Doublet).

• This Pake doublet is particular to spin-1 
material without cubic symmetry 
(Deuteron, Butanol).

https://doi.org/10.1016/S0168-9002(97)00317-3
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Deuteron Lineshape
 
• The Pake Doublet is mathematically 

described by the energy levels:

• The peaks correspond to the principle 
axis of the coupling interaction being 
perpendicular (θ = π/2) to the 
magnetic field.

• The opposing end (the pedestal) 
corresponds to the configuration when 
the principle axis of the coupling 
interaction is parallel (θ = 0) to the 
magnetic field

𝑟𝑟 =  �𝐼𝐼+ 𝐼𝐼−



Real Example of Deuteron Signal

Court, G.R. & Houlden, Michael & Bültmann, S. & Crabb, D.G. & Day, Day & Prok, Y.A. & Penttila, S.I. & Keith, Christopher. (2004). High precision measurement of the polarization in solid 
state polarized targets using NMR. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 527. 253-263. 
10.1016/j.nima.2004.02.041. 
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Measuring Polarization

• Thermal Equilibrium (Previous technique)
• When we have the lattice (L-Helium) and the target material at the 

same temperature, we can obtain the TE polarization by the equation: 
• 𝑃𝑃𝑇𝑇𝑇𝑇 = 4

3
tanh( ⁄ℏ𝜔𝜔𝑑𝑑 2𝑘𝑘𝑘𝑘)

• Then for any polarization not in TE
• 𝑃𝑃 = 𝐶𝐶 × 𝑃𝑃𝑇𝑇𝑇𝑇, where C is the calibration constant calculated

• Using TE method comes with considerable error (~ 7% relative error) from 
the change in area of the TE signal and the fitted signal.

9https://doi.org/10.1016/j.nima.2013.06.103



Limitations for Deuteron polarization 
determination
• The Liverpool Q-meter system allows for relative accuracy a deuteron signal’s polarization (error of about 1%). 

However, in the experimental setting, this is far worse, especially at low polarizations. Normally in the experimental 
setting, we’d expect a relative uncertainty of about 7%

• Sources of error:
• �𝑛𝑛λ

𝟐𝟐 cable length
• Q-meter configurations (calibration constant)
• Changes in RF environment
• Temperature Change
• Statistical errors dependent on DAQ

• Here, we’re concerned with trying to overcome complications caused by the first and third sources
• Also concerned with statistical error (variation in predictions by NN)

10https://doi.org/10.1016/j.nima.2013.06.103.



Proton (NH3)

• Single crystal has cubic symmetry with 
a space group of P213

• Larmor Frequency of ~213MHz for 5T

• Predict Area instead of polarization 

• Described by Voigt function



Differences between lineshape and area 
method

Lineshape
• Predict Polarization given a 

lineshape
• Specific to lineshape 
• Less accurate/precise
• Direct measurement of 

polarization 

Area
• Predict Area underneath curve

• Can generalize to any spin-1 
target specimen

• More accurate/precise
• Indirect measurement of 

polarization 



Why Artificial Neural 
Networks (ANN)?



Neural Networks: A 
Possible Solution

• By training a neural network (NN) on sample data that 
replicates experimentally accurate noise levels that evolve 
through time, we can go beyond the capability of the Q-
meter and make up for where it lacks. 

• Using to optimize precision and accuracy, regardless of 
Signal-to-Noise Ratio (SNR)

• SNR: ratio of maximum of amplitude of signal to maximum 
of amplitude of noise, represents how overwhelming the 
noise is

• By training an NN to associated a specific polarization with 
its associated signal over 500 data bins, we can accurately 
predict polarization for a given noisy signal



Preliminary Results 



NH3

ND3

Area range: 
~ 0 - .1

Polarization 
range: 
~ 0 – 100 %





Future

• Need to increase amount of training data
• Need to tune for this larger amount, 

especially for ND3

• ANN techniques for NMR (especially extracting 
area) are universal for all spin-1 specimen. 

• The adaptability of the ANN allows for changes 
in baseline and scanning range of an NMR to 
quickly and easily be considered

Need to improve this!



Thank you!
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