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Generalized parton distributions (GPDs) with purely
transverse momentum transfer can be interpreted as Fourier
transforms of the distribution of partons in impact parame-
ter space. The helicity-flip GPD E(x, 0,−∆

2

⊥) is related to
the distortion of parton distribution functions in impact pa-
rameter space if the target is not a helicity eigenstate, but
has some transverse polarization. This transverse distortion
can be used to develop an intuitive explanation for various
transverse single spin asymmetries.

I. INTRODUCTION

Deep-inelastic scattering experiments allow the de-
termination of parton distribution functions (PDFs),
which have the very physical interpretation as momen-
tum (fraction) distributions in the infinite momentum
frame (IMF). PDFs are defined as the forward matrix
element of a light-like correlation function, i.e.

q(x) =
〈

P, S
∣

∣

∣
Ôq(x,0⊥)

∣

∣

∣
P, S

〉

(1.1)

∆q(x)S+ = P+
〈

P, S
∣

∣

∣
Ôq,5(x,0⊥)

∣

∣

∣
P, S

〉

with

Ôq(x,0⊥) ≡
∫

dx−

4π
q̄(−x−

2
,0⊥)γ

+q(
x−

2
,0⊥)e

ixp+x−

(1.2)

Ôq,5(x,0⊥) ≡
∫

dx−

4π
q̄(−x−

2
,0⊥)γ

+γ5q(
x−

2
,0⊥)e

ixp+x−

.

When sandwiched between states that have the same
light-cone momentum p+ = 1√

2
(p0 + p3), these operators

act as a ‘filter’ for quarks of flavor q with momentum
fraction x. Throughout this work, we will use light-cone
gauge A+ = 0. In all other gauges, a straight line gauge
string connecting the quark field operators needs to be
included in this definition (1.1). Obviously, since PDFs
are expectation values taken in plane wave states, they
contain no information about the position space distri-
bution of quarks in the target.
Generalized parton distributions (GPDs) [1], which de-

scribe for example the scaling limit in real and virtual
Compton scattering experiments, are defined very sim-
ilar to PDFs except that one now takes a non-forward
matrix element of the light-cone correlator

〈P ′, S′|Ôq(x,0⊥)|P, S〉 (1.3)

=
1

2p̄+
ū(p′, s′)

(

γ+Hq(x, ξ, t) + i
σ+ν∆ν

2M
Eq(x, ξ, t)

)

u(p, s)

〈P ′, S′|Ôq,5(x,0⊥)|P, S〉 (1.4)

=
1

2p̄+
ū(p′, s′)

(

γ+γ5H̃q(x, ξ, t) + i
γ5∆+

2M
Ẽ(x, ξ, t)

)

u(p, s)

with p̄µ = 1
2 (p

µ + p′µ) being the mean momentum of
the target, ∆µ = p′µ − pµ the four momentum trans-
fer, and t = ∆2 the invariant momentum transfer. The
skewedness parameter ξ = − ∆+

2p̄+ quantifies the change in
light-cone momentum.
An important physical interpretation for GPDs derives

from the fact that they are the form factors of the light-
cone correlators Ôq(x,0⊥) and Ôq,5(x,0⊥). Because of
that, and by analogy with ordinary form factors, one
would therefore expect that GPDs can be interpreted as
some kind of Fourier transform of parton distributions in
position space. Indeed, as has been shown in Ref. [3–5],
the helicity non-flip1 GPD H for ξ = 0 is the Fourier
transform of the (unpolarized) impact parameter depen-
dent parton distribution function q(x,b⊥), i.e.

q(x,b⊥) =

∫

d2∆⊥

(2π)2
e−i∆⊥·b⊥H(x, 0,−∆2

⊥). (1.5)

The reference point for the impact parameter in Eq. (1.5)
is the (transverse) center of momentum (CM) of the tar-
get

R⊥ ≡ 1

p+

∫

d2x⊥

∫

dx−T++x⊥ =
∑

i∈q,g

xir⊥,i, (1.6)

where T++ is the light-cone momentum density compo-
nent of the energy momentum tensor. The sum in the
parton representation for R⊥ extends over the transverse
positions r⊥,i of all quarks quarks and gluons in the tar-
get and the weight factors xi is the momentum fraction
carried by each parton. The impact parameter depen-
dent PDFs are defined by introducing the b⊥-dependent
light-cone correlation

1The ‘helicity’ basis that we are using refers to the infinite
momentum frame helicity [2].
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We need a probe to “see” quarks and gluons
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HADRON’S PARTONIC STRUCTURE
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Collinear Parton Distribution Functions

P
k

fq/P (x)
longitudinal

Probability density to find a quark with a momentum fraction x


Hard probe resolves the particle nature of partons, but is not 
sensitive to hadron’s structure at ~fm distances.

xP



HADRON’S PARTONIC STRUCTURE
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P
k

One large scale (Q) sensitive to particle nature of quark and 
gluons

One small scale (kT) sensitive to how QCD bounds partons and to 
the detailed structure at ~fm distances.


Transverse Momentum Dependent functions

fq/P (x, kT )

longitudinal & transverse

To study the physics of confined motion of quarks and gluons inside of 
the proton one needs a new type “hard probe” with two scales.

kT

xP
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qT � QSmall scale Large scale

Semi-Inclusive DIS

electron 
p
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Drell-Yan Dihadron in e+e-

p p

h1 

h2 h
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e- e-e+µ+

µ�

Q, qT

The confined motion (kT dependence) is encoded in TMDs

Collins, Soper (1983) 
Collins (2011)

Collins, Soper, Sterman (1985) 
Ji, Ma, Yuan (2004) 

Collins (2011)Meng, Olness, Soper (1992) 
Ji, Ma, Yuan (2005) 

Idilbi, Ji, Ma, Yuan (2004)  
Collins (2011)

� ⇠ fq/P (x, kT )Dh/q(z, kT )
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TMDs with Polarization

Gluons

Fragmentation functions

Nuclear targets

Nucleon 

Polarization

Quark 

Polarization

Analogous tables for: f1 � fg
1 etc

S �= 1
2

Quark TMDs

�[�+]
q h(x, b) = f1(x, b) + i✏µ⌫T bµs⌫Mf?1 (x, b)
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum

Helicity

Boer-Mulders

Long-Transversity

Trans-Helicity
Sivers

Transversity

Pretzelosity

T

Kozinian-Mulders, 
“worm” gear

Kozinian-Mulders,“worm” gear

Unpolarized

9

Our understanding of hadron evolves:
Nucleon emerges as a strongly interacting, 

relativistic bound state of quarks and gluons
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Sivers function

➤ Describes unpolarized quarks inside of 
transversely polarized nucleon 


➤ Generates asymmetries in SIDIS and DY


➤ Changes sign in DY w.r.t. SIDIS  

Sivers 1989

Brodsky, Hwang, Schmidt (2002) 

Collins (2002)


Kotzinian (1995) 

Mulders, Tangerman (1995)

Boer, Mulders (1998)
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 TMD distributions  TMD distributions 

The Sivers function: unpolarized quark distribution inside 

a transversely polarized nucleon

Sivers 1989

Spin independent Spin dependent

Kotzinian (1995), 

Mulders, 

Tangerman (1995), 

Boer, Mulders (1998)
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Figure 1. The DY process in the Collins-Soper frame where the pion and the proton come in with
different momenta P⇡, Pp, but each carries the same transverse momentum 1

2 qT , and the produced lepton
pair is at rest. The angle � describes the inclination of the leptonic frame with respect to the hadronic
plane, and �S is the azimuthal angle of the transverse-spin vector of the proton.

and use the TMD evolution formalism starting from a fixed scale Q0 [21] in the structure functions
from Eqs. (2.1).

The evolution of TMDs is a double-scale problem, and can be implemented in momentum space
or impact parameter space with examples for both approaches in the literature [19, 32, 33, 110–112].
In our work we choose to implement the TMD evolution in the impact-parameter space with bT the
Fourier-conjugate variable to kTh where index h = ⇡ or p refers to pion or nucleon. The TMDs in
the impact-parameter space are generically given by f̃(xh, bT , µ, ⇣) where µ ⇠ Q is the “standard”
renormalization scale for ultraviolet logarithms, and ⇣ ⇠ Q2 is the rapidity renormalization scale.
In principle one can solve TMD evolution equations starting from some initial scale Q0 without
employing operator product expansion at low bT , Ref. [21]. The TMD at this initial scale is then
f(xh, bT , Q0, Q2

0). In this formulation the unpolarized structure function is similar to parton model
result and is expressed as [21]

F 1
UU (x⇡, xp, qT , Q

2) =
1

Nc

X

a

e2a

Z
bT dbT
2⇡

J0(qT bT )f̃
ā
1,⇡(x⇡, bT , Q0, Q

2
0)f̃

a
1,p(xp, bT , Q0, Q

2
0)

⇥ e�S(bT ,Q0,Q) , (2.4)

where the factor S(bT , Q0, Q) contains important effects of gluon radiation with S(bT , Q0, Q0) = 0
by construction [21]. One can parametrize TMDs at initial scale Q0 as

f̃a
1,p(xp, bT , Q0, Q

2
0) = fa

1,p(xp, Q0) e
� 1

4 b
2
T hk2

Tpif1,p , (2.5)

f̃a
1,⇡(x⇡, bT , Q0, Q

2
0) = fa

1,⇡(x⇡, Q0) e
� 1

4 b
2
T hk2

T⇡if1,⇡ , (2.6)

where x-dependent functions correspond to collinear distributions and the exponential factors are
“primordial shapes” of TMDs at the initial scale. This particular dependence is often used in
phenomenology [92, 113], corresponds to the Gaussian ansatz and is supported in models [58, 59,
66, 114, 115]. The average widths of TMDs may be flavor- and x-dependent and will be taken from
phenomenological parametrizations at Q2

0.

– 5 –

<latexit sha1_base64="JpmaQMy0fB+OjPXT4N+/tWN8/Rw=">AAACH3icbVDLTgIxFO3gC/E16tJNIzGBIGTG+FoS3bgyGOWRMMOkUzrQ0Hmk7WjIhD9x46+4caExxh1/Y4FZKHiT5p6cc25u73EjRoU0jLGWWVpeWV3Lruc2Nre2d/TdvYYIY45JHYcs5C0XCcJoQOqSSkZaESfIdxlpuoPrid58JFzQMHiQw4jYPuoF1KMYSUU5+rkV0U65UHNUL8ISvFUwOob3RWhx2utLxHn4BC3CWKc0a2Xlajl63qgY04KLwExBHqRVc/Rvqxvi2CeBxAwJ0TaNSNoJ4pJiRkY5KxYkQniAeqStYIB8Iuxket8IHimmC72QqxdIOGV/TyTIF2Lou8rpI9kX89qE/E9rx9K7tBMaRLEkAZ4t8mIGZQgnYcEu5QRLNlQAYU7VXyHuI46wVJHmVAjm/MmLoHFSMc8qxt1pvnqVxpEFB+AQFIAJLkAV3IAaqAMMnsEreAcf2ov2pn1qXzNrRktn9sGf0sY/jfuflg==</latexit>

⇡�(P⇡) +N(Pp, S) ! `+`� +X

Collins-Soper frame
<latexit sha1_base64="jWoOy0NFSf3iibw/pTeC+aHceXQ=">AAACH3icbVDLSgMxFM34rPVVdekmWIR2U2aKVJdFNy4rfUKnDpk004YmmZBkhDL0T9z4K25cKCLu+jemj4W2Hkg4nHMv994TSka1cd2ps7G5tb2zm9nL7h8cHh3nTk5bOk4UJk0cs1h1QqQJo4I0DTWMdKQiiIeMtMPR3cxvPxGlaSwaZixJj6OBoBHFyFgpyFV8TQccFepBowgt57NPFHw5pEG9CKMg9RqTR18SJaEfG8qJtqIX5PJuyZ0DrhNvSfJgiVqQ+/b7MU44EQYzpHXXc6XppUgZihmZZP1EE4nwCA1I11KB7KBeOr9vAi+t0odRrOwTBs7V3x0p4lqPeWgrOTJDverNxP+8bmKim15KhUwMEXgxKEoYNDGchQX7VBFs2NgShBW1u0I8RAphYyPN2hC81ZPXSatc8iql8sNVvnq7jCMDzsEFKAAPXIMquAc10AQYPINX8A4+nBfnzfl0vhalG86y5wz8gTP9AfNCobM=</latexit>

�(ST ) ⇠ sin(�S)f
?
1T ⌦ f1



SIGN CHANGE OF THE SIVERS FUNCTION
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Colored objects are surrounded by gluons, profound consequence of 
gauge invariance:  


The Sivers function has opposite sign when gluon couple after quark 
scatters (SIDIS) or before quark annihilates (Drell-Yan)


Crucial test of TMD factorization and collinear twist-3 factorization

Several labs worldwide measure Sivers effect in SIDIS and Drell-Yan

BNL, CERN, FERMILAB etc 


The verification of the sign change is an NSAC (DOE and NSF) 
milestone


Brodsky, Hwang, Schmidt `02

Belitsky, Ji,Yuan `04

Collins `02

Boer,Mulders,Pijlman `04

Kang, Qiu `08

Kovchegov, Sievert `18

etc



THE SIVERS FUNCTION
Large – Nc result


➔ Confirmed by phenomenological extractions 


➔ Confirmed by experimental measurements  

Pobylitsa 2003

Relation to GPDs (E) and anomalous magnetic moment


➔ Predicted correct sign of Sivers asymmetry in SIDIS


➔ Shown to be model-dependent


➔ Used in phenomenological extractions 


Burkardt 2002

Meissner, Metz, Goeke 2007

Bacchetta, Radici 2011
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THE SIVERS FUNCTION
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Sum rule


➔ Conservation of transverse momentum


➔ Average transverse momentum shift of a quark inside a transversely 

polarized nucleon


➔  Sum rule

Burkardt 2004

X

a=q,g

Z 1

0
dxhki,aT i = 0

X

a=q,g

Z 1

0
dxf?(1)a

1T (x) = 0
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TMD FACTORIZATION IN A NUT-SHELL
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Factorization of regions: 

(1) k//P1, (2) k//P2, (3) k soft, (4) k hard

Collins-Soper Equations

µ = renormalization scale

� = Collins-Soper parameter

Eq. (1.1) in b-space reads

f
?
1T (x, b; µ, ⇣)[SIDIS] = �f

?
1T (x, b; µ, ⇣)[DY]. (2.3)

For definiteness, in the formulas for a particular process we use the notation f
?
1T for the Sivers

function without explicit indication of the process, and the sign change between DY and SIDIS is
implemented in calculations. All our results of the Sivers function extraction will be presented for
the SIDIS definition.

The dependence on the scales µ and ⇣ is given by a pair of TMD evolution equations [4, 68, 74]

µ
2 dF (x, b; µ, ⇣)

dµ2
=

�F (µ, ⇣)

2
F (x, b; µ, ⇣), (2.4)

⇣
dF (x, b; µ, ⇣)

d⇣
= �D(b, µ)F (x, b; µ, ⇣), (2.5)

where F is any TMD distribution (f1, f
?
1T , or D1 in the current context). The first equation is

the ordinary renormalization group equation, with �F being the ultraviolet anomalous dimension
for the TMD operator. The second equation is the result of the factorization of rapidity anoma-
lous dimension, with D being the Collins-Soper kernel2 (or rapidity anomalous dimension). The
Collins-Soper kernel is a fundamental universal function that has explicit operator definition and
parametrizes properties of QCD vacuum [75]. It is a universal function, nonperturbative at large-
b while at small-b it is calculable in terms of the perturbative expansion in the strong coupling
constant ↵s, whereas it has to be extracted from the experimental data. Both quark and rapidity
anomalous dimensions are known up to N3LO in the perturbative regime, see Refs. [76–79].

Using the evolution equations one relates measurements performed at different energies. It is
convenient to select certain value of the pair (µ, ⇣) as a reference scale. There are several choices
of the reference scale (µ, ⇣) used in the literature, see Refs. [4, 17, 68]. In this work we use the
so-called ⇣-prescription [68]. It consists in selection of the reference scale (µ, ⇣) = (µ, ⇣µ(b)) on the
equipotential line (of (�F , �D)-field) that passes through the saddle point. In this case, the reference
TMD distribution, called the optimal TMD distribution, is independent on µ (by definition) and
perturbatively finite in the whole range of µ and b. The solution of the TMD evolution equations
from Eqs. (2.4, 2.5) can be written in the following simple form

F (x, b; µ, ⇣) =

✓
⇣

⇣µ(b)

◆�D(b,µ)

F (x, b), (2.6)

where F (x, b) on the right-hand side of the equation (2.6) is the optimal TMD distribution [65].
The functions ⇣µ(b) is a known function [80] of the nonperturbative Collins-Soper kernel. In our
notations, the optimal TMD distribution F (x, b) has no scaling arguments, which emphasizes its
scale independence.

2.2 Sivers asymmetry in SIDIS

The differential SIDIS cross section of the inclusive hadron production in the electron scattering off
a transversely polarized target (e(l) + h1(P, S) ! e(l0) + h2(ph) + X) has the following structure
[13, 81–83]

d�

dx dy dz d�Sd�h dP 2
hT

=
↵
2
em(Q)

Q2

y

2(1 � ")

(
FUU,T + |S?|sin(�h � �S)F sin(�h��S)

UT,T + ...

)
,(2.7)

2
Our definition of the rapidity anomalous dimension corresponds to K̃ and �⌫ used in Refs. [4] and [74] as

D = �K̃/2 = ��⌫/2.
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Collins, Soper, Sterman (85), Collins (11), Rogers, Collins (15)

OPE/collinear part transverse part, Sudakov FF ✓ Non-perturbative: fitted from data


✓ The key ingredient – ln(Q) piece is 
spin-independent


✓ Non-perturbative shape of TMDs is 
to be extracted from data


✓ One can use information from  
models or ab-initio calculations, 
such as lattice QCD: shape of 
TMDs, non-perturbative kernel.

The evolution is complicated as one evolves in 2 
dimensions

The presence of a non-perturbative evolution 
kernel makes calculations more involved

Theoretical constraints exist on both non-
perturbative shape of TMD and the non-
perturbative kernel of evolution
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SUCCESS OF TMD FACTORIZATION PREDICTIVE POWER

Upsilon production

Quarkonium production in hadronic collisions in TMD framework Kazuhiro Watanabe
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100

101

102

103

104

⌥(1S)

P? [GeV]

B
r µ

+
µ
�

d2
�

dP
?
dy

[p
b
/G

eV
]

CDF :
p
s = 1.8 TeV, |y| < 0.4

ATLAS :
p
s = 7 TeV, |y| < 1.2 (⇥5)

Figure 2: Differential cross section for °(1S) production in hadronic collisions at Tevatron and the LHC in
the middle rapidity region. All the input parameters are chosen to be the same as in Ref. [7]. Data are taken
from [13, 14].

section at RHIC energy. For the qq̄ channel, the b?-distribution of Wqq̄ is more broad so that the
nonperturbative form factor is more relevant. Nevertheless, in our calculations, we do not need to
worry too much about it because the size of contribution from the gg channel is more than an order
of magnitude larger than that from the qq̄ channel.

Figure 2 displays differential cross sections for °(1S) production in hadronic collisions at
Tevatron and the LHC by computing Eq. (2.3) with Eq. (2.1). We set µ = 0.5

q
M2 +P2

? for the
perturbation term. At Tevatron, we reproduce the early prediction in Ref. [7] by setting Fbb̄!° =

C° = 0.044 that was obtained by data fitting in Ref. [7], which is effectively a Color-Evaporation-
Model calculation [4]. To compare with data, we simply switch the resummation term to the NLO
perturbative term at the intersection of two curves around P? ⇠ M°/2, instead of using the Y -term.
We have also multiplied the resummation term by a factor Kr = 1.22 to match the perturbation result
at the intersection. At the LHC, there is more phase space for gluons shower, and we expect our
predictions with the same parameters set to be consistent with the data, which is confirmed nicely
by the data up to around P? = 10 GeV. It is worth noting that the matching point shifts toward
larger P? at the LHC compared to that at Tevatron. This is because an increase in the scattering
energy allows more phase space for incoming partons to radiate.

4. Summary

We have performed numerical calculations for ° production in high-energy hadronic colli-
sions in terms of the Collins-Soper-Sterman resummation formalism in the TMD framework. The
behavior of Wgg and Wqq̄ in the b?-space at Tevatron and the LHC clearly shows that our perturba-
tively calculated results are reliable without much ambiguities associated with the nonperturbative
Sudakov factor at large b?. Our results can naturally describe both the Tevatron data and the LHC

4

April 19, 2018 10:18 IJMPA S0217751X18410063 page 12

P. Sun et al.

 (GeV)
t

p
0 2 4 6 8 10 12 14 16 18 20 22

t
d

pσ
d

σ1

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055 SIYY-1

SIYY-g

 (GeV)
t

p
0 2 4 6 8 10 12 14 16 18 20

t
d

pσ
d

σ1

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055 SIYY-1

SIYY-g

Fig. 8. Compare the resummation prediction for Z boson production at the LHC.49–51 The data
in left one is from the ATLAS collaboration, the right one is for CMS collaboration. These data
are not included in our fit.

parameters are fitted only with the Drell–Yan type data. From the comparison to
the experimental data, we can see that the new form is equally good as compared
to the original BLNY parametrization.

4. Fitting Semi-Inclusive DIS Data with New Parametrization

The universality of the parton distribution functions (PDFs) is a powerful prediction
from QCD factorization. According to the TMD factorization, the nonperturbative
functions determined for the TMD quark distributions from the Drell–Yan type
of processes shall apply to that in the SIDIS processes. Of course, the transverse
momentum distribution of hadron production in DIS processes also depends on
the final state fragmentation functions, which we will parametrize. Following the
universality argument, we introduce the following parametrization form to describe
the nonperturbative form factors for SIDIS processes,

S(DIS)
NP = g2 ln(b/b∗) ln(Q/Q0) + g1b

2/2 + g3(x0/xB)
λ + ghb

2/z2h . (16)

In the above parametrization, named as SIYY-2 form, g1, g2 and g3 have been
determined from the experimental data of Drell–Yan lepton pair production. The
only unknown parameter gh will be determined by fitting to the HERMES and
COMPASS data. Although there has been evidence from a recent study34 that gh
could be different for the so-called favored and dis-favored fragmentation functions,
we will take them to be the same in this study, for simplicity. With more data
coming out in the future, we should be able to fit with separate parameters.

In principle, we can fit g1, g2, g3, and gh together to both Drell–Yan and SIDIS
data. However, the DIS data do not cover large range ofQ2. In addition, the differen-
tial cross-sections in SIDIS depend on the fragmentation function, which themselves
are not well constrained at the present time. Therefore, in this paper, we will take
the parameters g(1,2,3) fitted to the Drell–Yan data to compare to the SIDIS to
check if they are consistent with the SIDIS data.
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Z boson production at the LHC

➤ TMD factorization (with an appropriate matching to collinear results) aims at an 
accurate description (and prediction) of a differential in qT cross section in a 
wide range of qT


➤ LHC results at 7 and 13 TeV are accurately predicted from fits of lower energies
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Qiu, Watanabe arXiv:1710.06928 Sun, Isaacson, Yuan, Yuan arXiv:1406.3073
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Figure 2. Ratio of theoretical and experimental points as a function of the binned di-lepton transverse

momentum for the measured at ATLAS in the range 66 < Q < 116 GeV (dashed red lines). The exper-

imental points (blue dots) are surrounded by a box describing their error. The representation takes into

account the shifts as described in the text.

Figure 3. Ratio of theoretical and experimental points as a function of the binned di-lepton transverse

momentum for the measured at CMS and LHCb experiments (dashed red lines). The experimental points

(blue dots) are surrounded by a box describing their error. The representation takes into account the shifts

as described in the text.

due to large systematic uncertainties for this data. The reported correlated systematic error for
E288(E605, E772) experiments is 25%(15%, 10%) [35, 55, 56]. This systematic discrepancy has been
recently discussed in [68], where it was connected to the fixed-target nature of these experiments.

5.2 Extracted values of TMDPDF and rapidity anomalous dimension

We now turn to the values of the TMDPDFs and rapidity anomalous dimension as extracted from
the fit. Our results for the non-perturbative parameters are presented in tab. 4. The central values

– 13 –
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TMD EVOLUTION CONTAINS NON-PERTURBATIVE COMPONENT
Scimemi, Vladimirov (18), (20) 
Vladimirov (20)
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µf = Q thus as is small
Does just the same job as the
Sudakov exponent
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TMD evolution is a two scale evolution

Remarkably simple in the zeta-prescription

Eq. (1.1) in b-space reads

f
?
1T (x, b; µ, ⇣)[SIDIS] = �f

?
1T (x, b; µ, ⇣)[DY]. (2.3)

For definiteness, in the formulas for a particular process we use the notation f
?
1T for the Sivers

function without explicit indication of the process, and the sign change between DY and SIDIS is
implemented in calculations. All our results of the Sivers function extraction will be presented for
the SIDIS definition.

The dependence on the scales µ and ⇣ is given by a pair of TMD evolution equations [4, 68, 74]

µ
2 dF (x, b; µ, ⇣)

dµ2
=

�F (µ, ⇣)

2
F (x, b; µ, ⇣), (2.4)

⇣
dF (x, b; µ, ⇣)

d⇣
= �D(b, µ)F (x, b; µ, ⇣), (2.5)

where F is any TMD distribution (f1, f
?
1T , or D1 in the current context). The first equation is

the ordinary renormalization group equation, with �F being the ultraviolet anomalous dimension
for the TMD operator. The second equation is the result of the factorization of rapidity anoma-
lous dimension, with D being the Collins-Soper kernel2 (or rapidity anomalous dimension). The
Collins-Soper kernel is a fundamental universal function that has explicit operator definition and
parametrizes properties of QCD vacuum [75]. It is a universal function, nonperturbative at large-
b while at small-b it is calculable in terms of the perturbative expansion in the strong coupling
constant ↵s, whereas it has to be extracted from the experimental data. Both quark and rapidity
anomalous dimensions are known up to N3LO in the perturbative regime, see Refs. [76–79].

Using the evolution equations one relates measurements performed at different energies. It is
convenient to select certain value of the pair (µ, ⇣) as a reference scale. There are several choices
of the reference scale (µ, ⇣) used in the literature, see Refs. [4, 17, 68]. In this work we use the
so-called ⇣-prescription [68]. It consists in selection of the reference scale (µ, ⇣) = (µ, ⇣µ(b)) on the
equipotential line (of (�F , �D)-field) that passes through the saddle point. In this case, the reference
TMD distribution, called the optimal TMD distribution, is independent on µ (by definition) and
perturbatively finite in the whole range of µ and b. The solution of the TMD evolution equations
from Eqs. (2.4, 2.5) can be written in the following simple form

F (x, b; µ, ⇣) =

✓
⇣

⇣µ(b)

◆�D(b,µ)

F (x, b), (2.6)

where F (x, b) on the right-hand side of the equation (2.6) is the optimal TMD distribution [65].
The functions ⇣µ(b) is a known function [80] of the nonperturbative Collins-Soper kernel. In our
notations, the optimal TMD distribution F (x, b) has no scaling arguments, which emphasizes its
scale independence.

2.2 Sivers asymmetry in SIDIS

The differential SIDIS cross section of the inclusive hadron production in the electron scattering off
a transversely polarized target (e(l) + h1(P, S) ! e(l0) + h2(ph) + X) has the following structure
[13, 81–83]

d�

dx dy dz d�Sd�h dP 2
hT

=
↵
2
em(Q)

Q2

y

2(1 � ")

(
FUU,T + |S?|sin(�h � �S)F sin(�h��S)

UT,T + ...

)
,(2.7)

2
Our definition of the rapidity anomalous dimension corresponds to K̃ and �⌫ used in Refs. [4] and [74] as

D = �K̃/2 = ��⌫/2.

– 5 –

Eq. (1.1) in b-space reads

f
?
1T (x, b; µ, ⇣)[SIDIS] = �f

?
1T (x, b; µ, ⇣)[DY]. (2.3)

For definiteness, in the formulas for a particular process we use the notation f
?
1T for the Sivers

function without explicit indication of the process, and the sign change between DY and SIDIS is
implemented in calculations. All our results of the Sivers function extraction will be presented for
the SIDIS definition.

The dependence on the scales µ and ⇣ is given by a pair of TMD evolution equations [4, 68, 74]

µ
2 dF (x, b; µ, ⇣)

dµ2
=

�F (µ, ⇣)

2
F (x, b; µ, ⇣), (2.4)

⇣
dF (x, b; µ, ⇣)

d⇣
= �D(b, µ)F (x, b; µ, ⇣), (2.5)

where F is any TMD distribution (f1, f
?
1T , or D1 in the current context). The first equation is

the ordinary renormalization group equation, with �F being the ultraviolet anomalous dimension
for the TMD operator. The second equation is the result of the factorization of rapidity anoma-
lous dimension, with D being the Collins-Soper kernel2 (or rapidity anomalous dimension). The
Collins-Soper kernel is a fundamental universal function that has explicit operator definition and
parametrizes properties of QCD vacuum [75]. It is a universal function, nonperturbative at large-
b while at small-b it is calculable in terms of the perturbative expansion in the strong coupling
constant ↵s, whereas it has to be extracted from the experimental data. Both quark and rapidity
anomalous dimensions are known up to N3LO in the perturbative regime, see Refs. [76–79].

Using the evolution equations one relates measurements performed at different energies. It is
convenient to select certain value of the pair (µ, ⇣) as a reference scale. There are several choices
of the reference scale (µ, ⇣) used in the literature, see Refs. [4, 17, 68]. In this work we use the
so-called ⇣-prescription [68]. It consists in selection of the reference scale (µ, ⇣) = (µ, ⇣µ(b)) on the
equipotential line (of (�F , �D)-field) that passes through the saddle point. In this case, the reference
TMD distribution, called the optimal TMD distribution, is independent on µ (by definition) and
perturbatively finite in the whole range of µ and b. The solution of the TMD evolution equations
from Eqs. (2.4, 2.5) can be written in the following simple form

F (x, b; µ, ⇣) =

✓
⇣

⇣µ(b)

◆�D(b,µ)

F (x, b), (2.6)

where F (x, b) on the right-hand side of the equation (2.6) is the optimal TMD distribution [65].
The functions ⇣µ(b) is a known function [80] of the nonperturbative Collins-Soper kernel. In our
notations, the optimal TMD distribution F (x, b) has no scaling arguments, which emphasizes its
scale independence.

2.2 Sivers asymmetry in SIDIS

The differential SIDIS cross section of the inclusive hadron production in the electron scattering off
a transversely polarized target (e(l) + h1(P, S) ! e(l0) + h2(ph) + X) has the following structure
[13, 81–83]
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Our definition of the rapidity anomalous dimension corresponds to K̃ and �⌫ used in Refs. [4] and [74] as
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is the “optimal” TMD

Eq. (1.1) in b-space reads

f
?
1T (x, b; µ, ⇣)[SIDIS] = �f

?
1T (x, b; µ, ⇣)[DY]. (2.3)

For definiteness, in the formulas for a particular process we use the notation f
?
1T for the Sivers

function without explicit indication of the process, and the sign change between DY and SIDIS is
implemented in calculations. All our results of the Sivers function extraction will be presented for
the SIDIS definition.

The dependence on the scales µ and ⇣ is given by a pair of TMD evolution equations [4, 68, 74]

µ
2 dF (x, b; µ, ⇣)

dµ2
=

�F (µ, ⇣)

2
F (x, b; µ, ⇣), (2.4)

⇣
dF (x, b; µ, ⇣)

d⇣
= �D(b, µ)F (x, b; µ, ⇣), (2.5)

where F is any TMD distribution (f1, f
?
1T , or D1 in the current context). The first equation is

the ordinary renormalization group equation, with �F being the ultraviolet anomalous dimension
for the TMD operator. The second equation is the result of the factorization of rapidity anoma-
lous dimension, with D being the Collins-Soper kernel2 (or rapidity anomalous dimension). The
Collins-Soper kernel is a fundamental universal function that has explicit operator definition and
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Figure 1. The dependence of the single-spin Sivers asymmetry on Q at fixed values of x = 0.12,
z = 0.32, and PhT = 0.14 GeV (these values correspond to a particular bin of HERMES [35]). Different
perturbative orders are compared. In all cases unpolarized TMD PDF, TMD FF, the Sivers function and
the nonperturbative part of the CS kernel are the same. The change of the perturbative order influences
the order of perturbative part of CS kernel, TMD anomalous dimension.

evolution factor R. Each of these factors governs dependence on a particular kinematic variable, x

and z for TMD distributions, and Q for evolution factor, and altogether they are integrated over b

with a Bessel function.
The single-spin Sivers asymmetry that is measured in SIDIS experiments, is the ratio of struc-

ture functions

A
sin(�h��S)
UT ⌘

F
sin(�h��S)
UT,T

FUU,T
= �M

B
SIDIS
1

⇥
f
?
1TD1

⇤

BSIDIS
0 [f1D1]

. (2.15)

Combining expressions from Eqs. (2.10, 2.11, 2.13) we obtain the following formula

A
sin(�h��S)
UT = �M

X

q

e
2
q

Z 1

0

bdb

2⇡
b J1

✓
b|PhT |

z

◆
R(b, Q)f?1T,q h1

(x, b)D1,q!h2(z, b)

X

q

e
2
q

Z 1

0

bdb

2⇡
J0

✓
b|PhT |

z

◆
R(b, Q)f1,q h1(x, b)D1,q!h2(z, b)

. (2.16)

The dependence on Q in (2.16) is enclosed in the factors R(b, Q). They are the only part of
our computation that depends on the perturbative input since the hard coefficient functions |CV |

2

exactly cancel in the ratio Eq. (2.16). The perturbative order is defined by the order of TMD
anomalous dimension (2.4) and by the perturbative part of CS-kernel (2.5) (see also Eq. (2.29)).
Nowadays, these anomalous dimensions are known up to three-loop order, i.e. up to ↵

3
s [76–79].

This maximum order (the �cusp part is taken with one order higher, i.e. at ↵
4
s [89]) we refer as

N3LO, according to the standard nomenclature (see Ref. [18] for extended discussion and references).
Currently, one can define four consequent orders of perturbative input, starting from LO, which
contains �cusp at LO, and null for other anomalous dimensions. In Fig. 1 we demonstrate3 the
comparison of different orders and the general behavior of asymmetry as a function of Q. The
convergence of the series is good. The difference between orders is almost homogeneous at different
Q and ⇠ 50% at LO!NLO, ⇠ �7% at NLO!NNLO, and ⇠ 3% at NNLO!N3LO. Also, we notice

3
We anticipate and use in Fig. 1 our results of extraction of the Sivers function that we will perform in Sec. 4.1.

The Q dependence of the asymmetry depends mainly on the evolution factor R that is known from the analysis

of unpolarized data. The dependence on the parameters describing nonperturbative TMD functions is quite weak

therefore a similar Q behavior is anticipated for all TSSAs that include J1

⇣
b|PhT |

z

⌘
.
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apart from the usual constraints. We require f
?
1T (x ! 1, b) . (1 � x), f

?
1T (x ! 0, b) . x

�1 to
ensure integrability and vanishing of the Sivers function at x = 0 and x = 1. Also, we require that
f
?
1T (x, b) is a function of x and b

2 to mimic the operator product expansion structure. We have
explored many parametric forms and selected the following one, which is flexible enough to reveal
the Sivers function, but at the same time is not overwhelmed with free parameters:

f
?
1T ;q h(x, b) = Nq

(1 � x)x�q (1 + ✏qx)

n(�q, ✏q)
exp

✓
�

r0 + xr1
p

1 + r2x
2b2

b
2

◆
, (2.31)

where n(�, ✏) = (3 + � + ✏ + ✏�)�(� + 1)/�(� + 4), such that
Z 1

0
dxf

?
1T ;q h(x, 0) = Nq. (2.32)

The b-dependent factor mimics fNP (x, b) used in SV19 fit, with a reduced number of parameters.
Notice that b and x dependencies do not factorize in our parametrization. The experimental data
on Sivers asymmetries is available for various final states, including charged pions and kaons. The
quark composition of those final states allows access to u, d, s quark flavors but is not sufficient to
distinguish other sea quarks, such as ū, d̄, and s̄. The Sivers function for heavy quark flavors b and
c cannot be extracted with the current data either. Thus, we will distinguish separate functions for
u, d, s quarks, and a single sea Sivers function for ū, d̄ and s̄ quarks. We nullify the Sivers function
for b and c flavors. We also set �s = �sea and ✏s = ✏sea = 0, since they are not restricted by the
existing experimental data. Large-x region of the data is also limited at the moment to x . 0.5
and we therefore are using a general (1 � x) factor in our parametrization. In total we have 12
free parameters: Nu, Nd, Ns and Nsea that dictates the general scale, �u, �d and �sea that gives
small-x asymptotic (�i > �1), ✏u and ✏d to fine-tune of valence distributions, and r0, r1 and r2 for
x-dependence in parameterization of transverse momentum behavior (ri > 0).

Let us emphasize that the absence of small-b matching in the optimal Sivers function is not in
contradiction with the perturbative order of TMD evolution (NNLO and N3LO in the current case)
or the perturbative order of matching to other distributions (NNLO for unpolarized distributions).
The utilization of different orders for components in TMD factorization is consistent within the ⇣-
prescription, as well as, in other schemes with fixed reference scale for TMD distributions, discussed
e.g. in Ref. [94], but is not consistent in the resummation-like schemes e.g. used in Refs [27, 29, 31].
In the latter scheme, one would need to use the matching function for Sivers function at N3LO,
which is not yet available [73]. For resummation-like schemes of scale-fixation, where the scales of
TMD distributions depend on b in an arbitrary manner, such an approach is inconsistent. In this
case, the orders of TMD evolution and matching coefficients must be adjusted to guarantee the
compensation of scaling logarithms.

3 Global analysis procedure

In this Section we discuss basic principles of the global QCD analysis, data selection, fit procedure,
and the study of the limits of TMD factorization.

3.1 Data selection

The TMD factorization theorem is derived in the limit of large-Q and a small relative transverse
momentum �, defined as

� =
|PhT |

zQ
(in SIDIS), � =

|qT |

Q
(in DY). (3.1)

– 11 –

12 parameters, q=u, d, s, sea

where

q
2 = �Q

2
, x =

Q
2

2P · q
, y =

P · q

P · l
, z =

P · Ph

P · q
, " =

1 � y

1 � y + y2

4

, (2.8)

where q = l � l
0 is the momentum of the virtual photon. The variables �h and PhT are the angle

and the absolute value of transverse component of the produced hadron’s momentum, measured
in the laboratory frame. The azimuthal angles for transverse components of the produced hadron
(�h) and the spin of the target hadron (�S) are defined relative to the lepton plane [84]. The dots
denote other angular modulations that are not interesting in the current context, and also the power
suppressed structure functions [13], such as FUU,L and F

sin(�h��S)
UT,L , which do not contribute at our

order of accuracy. We define the shorthand notation

B
SIDIS
n [fD] ⌘

X

q

e
2
q

Z 1

0

bdb

2⇡
b
n
Jn

✓
b|PhT |

z

◆
fq h1(x, b; µ, ⇣1)Dq!h2(z, b; µ, ⇣2) (2.9)

where f and D are TMD PDF and FF, Jn is the Bessel function of the first kind and eq are electric
charges of quarks q and the summation runs over all active quarks and antiquarks. Within the
TMD factorization the expressions for structure functions FUU,T and F

sin(�h��S)
UT,T are

FUU,T =
��CV (Q2

, µ
2)
��2 B

SIDIS
0 [f1D1] , (2.10)

F
sin(�h��S)
UT,T = �M

��CV (Q2
, µ

2)
��2 B

SIDIS
1

⇥
f
?
1TD1

⇤
, (2.11)

where CV is the quark vector form-factor and the hadron mass M is originated from the definition
of the Sivers function Eq. (2.1).

Let us emphasize the combination |PhT |/z that enters the argument of the Bessel function
in Eq. (2.9). It is originated from the Lorenz transformation from the factorization frame, where
the factorization theorem is derived, to the laboratory photon-proton center of mass frame, where
the experimental measurement is performed in which experimental data are usually analyzed, see
Ref. [84]. This combination serves as a small parameter, and power corrections to Eqs. (2.10) and
(2.11) have a generic size O((PhT /z/Q)2). The accurate transformation between the frames must
account for masses of initial and final hadrons. In this case, the argument of the Bessel function is
more complicated [18]. Here, we omit these complications, which is valid in Q ! 1 limit.

The scales of the factorization should be selected such that µ ⇠ Q, and ⇣1⇣2 = Q
4 [4, 11, 74, 85–

87]. We use

µ
2 = Q

2
, ⇣1 = ⇣2 = Q

2
. (2.12)

The resulting products of TMD distributions are to be evolved to the scale of the experimental
measurement. Since the TMD evolution is independent of the flavor and the spin, all structure
functions (at the leading TMD twist) have common evolution properties [88]. In the case of the
⇣-prescription, using Eq. (2.6) one derives that products of TMD distributions in Eq. (2.9) turn
into

fq h1(x, b; Q, Q
2)Dq!h2(z, b; Q, Q

2) = R(b, Q)fq h1(x, b)Dq!h2(z, b) , (2.13)

where we introduced the evolution factor

R(b, Q) =

✓
Q

2

⇣Q(b)

◆�2D(b,Q)

(2.14)

Therefore, in the TMD factorization framework structure functions are Fourier transforms of prod-
ucts of three b-dependent universal factors: two TMD distributions fq h and Dq!h, and the
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Common for all flavors

Similar to unpolarized SV19

apart from the usual constraints. We require f
?
1T (x ! 1, b) . (1 � x), f

?
1T (x ! 0, b) . x

�1 to
ensure integrability and vanishing of the Sivers function at x = 0 and x = 1. Also, we require that
f
?
1T (x, b) is a function of x and b

2 to mimic the operator product expansion structure. We have
explored many parametric forms and selected the following one, which is flexible enough to reveal
the Sivers function, but at the same time is not overwhelmed with free parameters:

f
?
1T ;q h(x, b) = Nq

(1 � x)x�q (1 + ✏qx)

n(�q, ✏q)
exp

✓
�

r0 + xr1
p

1 + r2x
2b2

b
2

◆
, (2.31)

where n(�, ✏) = (3 + � + ✏ + ✏�)�(� + 1)/�(� + 4), such that
Z 1

0
dxf

?
1T ;q h(x, 0) = Nq. (2.32)

The b-dependent factor mimics fNP (x, b) used in SV19 fit, with a reduced number of parameters.
Notice that b and x dependencies do not factorize in our parametrization. The experimental data
on Sivers asymmetries is available for various final states, including charged pions and kaons. The
quark composition of those final states allows access to u, d, s quark flavors but is not sufficient to
distinguish other sea quarks, such as ū, d̄, and s̄. The Sivers function for heavy quark flavors b and
c cannot be extracted with the current data either. Thus, we will distinguish separate functions for
u, d, s quarks, and a single sea Sivers function for ū, d̄ and s̄ quarks. We nullify the Sivers function
for b and c flavors. We also set �s = �sea and ✏s = ✏sea = 0, since they are not restricted by the
existing experimental data. Large-x region of the data is also limited at the moment to x . 0.5
and we therefore are using a general (1 � x) factor in our parametrization. In total we have 12
free parameters: Nu, Nd, Ns and Nsea that dictates the general scale, �u, �d and �sea that gives
small-x asymptotic (�i > �1), ✏u and ✏d to fine-tune of valence distributions, and r0, r1 and r2 for
x-dependence in parameterization of transverse momentum behavior (ri > 0).

Let us emphasize that the absence of small-b matching in the optimal Sivers function is not in
contradiction with the perturbative order of TMD evolution (NNLO and N3LO in the current case)
or the perturbative order of matching to other distributions (NNLO for unpolarized distributions).
The utilization of different orders for components in TMD factorization is consistent within the ⇣-
prescription, as well as, in other schemes with fixed reference scale for TMD distributions, discussed
e.g. in Ref. [94], but is not consistent in the resummation-like schemes e.g. used in Refs [27, 29, 31].
In the latter scheme, one would need to use the matching function for Sivers function at N3LO,
which is not yet available [73]. For resummation-like schemes of scale-fixation, where the scales of
TMD distributions depend on b in an arbitrary manner, such an approach is inconsistent. In this
case, the orders of TMD evolution and matching coefficients must be adjusted to guarantee the
compensation of scaling logarithms.

3 Global analysis procedure

In this Section we discuss basic principles of the global QCD analysis, data selection, fit procedure,
and the study of the limits of TMD factorization.

3.1 Data selection

The TMD factorization theorem is derived in the limit of large-Q and a small relative transverse
momentum �, defined as

� =
|PhT |

zQ
(in SIDIS), � =

|qT |

Q
(in DY). (3.1)
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Nu,d,�u,d, ✏u,d
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<latexit sha1_base64="zUa7AmSizrhRZ0odnmz4PEIGmAc=">AAAB/nicbZDLSgNBEEV74ivGV1RcuWkMgqswE0TdCEE3LiOYByTDUNOpSZr0POjuEcIQ8FfcuFDErd/hzr+xk8xCEy80HG5VUdXXTwRX2ra/rcLK6tr6RnGztLW9s7tX3j9oqTiVDJssFrHs+KBQ8AibmmuBnUQihL7Atj+6ndbbjygVj6MHPU7QDWEQ8YAz0Mbyykc9HzV4il7TOWUKYeKVK3bVnokug5NDheRqeOWvXj9maYiRZgKU6jp2ot0MpOZM4KTUSxUmwEYwwK7BCEJUbjY7f0JPjdOnQSzNizSdub8nMgiVGoe+6QxBD9VibWr+V+umOrhyMx4lqcaIzRcFqaA6ptMsaJ9LZFqMDQCT3NxK2RAkMG0SK5kQnMUvL0OrVnUuqrX780r9Jo+jSI7JCTkjDrkkdXJHGqRJGMnIM3klb9aT9WK9Wx/z1oKVzxySP7I+fwCv9ZVT</latexit>
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apart from the usual constraints. We require f
?
1T (x ! 1, b) . (1 � x), f

?
1T (x ! 0, b) . x

�1 to
ensure integrability and vanishing of the Sivers function at x = 0 and x = 1. Also, we require that
f
?
1T (x, b) is a function of x and b

2 to mimic the operator product expansion structure. We have
explored many parametric forms and selected the following one, which is flexible enough to reveal
the Sivers function, but at the same time is not overwhelmed with free parameters:

f
?
1T ;q h(x, b) = Nq

(1 � x)x�q (1 + ✏qx)

n(�q, ✏q)
exp

✓
�

r0 + xr1
p

1 + r2x
2b2

b
2

◆
, (2.31)

where n(�, ✏) = (3 + � + ✏ + ✏�)�(� + 1)/�(� + 4), such that
Z 1

0
dxf

?
1T ;q h(x, 0) = Nq. (2.32)

The b-dependent factor mimics fNP (x, b) used in SV19 fit, with a reduced number of parameters.
Notice that b and x dependencies do not factorize in our parametrization. The experimental data
on Sivers asymmetries is available for various final states, including charged pions and kaons. The
quark composition of those final states allows access to u, d, s quark flavors but is not sufficient to
distinguish other sea quarks, such as ū, d̄, and s̄. The Sivers function for heavy quark flavors b and
c cannot be extracted with the current data either. Thus, we will distinguish separate functions for
u, d, s quarks, and a single sea Sivers function for ū, d̄ and s̄ quarks. We nullify the Sivers function
for b and c flavors. We also set �s = �sea and ✏s = ✏sea = 0, since they are not restricted by the
existing experimental data. Large-x region of the data is also limited at the moment to x . 0.5
and we therefore are using a general (1 � x) factor in our parametrization. In total we have 12
free parameters: Nu, Nd, Ns and Nsea that dictates the general scale, �u, �d and �sea that gives
small-x asymptotic (�i > �1), ✏u and ✏d to fine-tune of valence distributions, and r0, r1 and r2 for
x-dependence in parameterization of transverse momentum behavior (ri > 0).

Let us emphasize that the absence of small-b matching in the optimal Sivers function is not in
contradiction with the perturbative order of TMD evolution (NNLO and N3LO in the current case)
or the perturbative order of matching to other distributions (NNLO for unpolarized distributions).
The utilization of different orders for components in TMD factorization is consistent within the ⇣-
prescription, as well as, in other schemes with fixed reference scale for TMD distributions, discussed
e.g. in Ref. [94], but is not consistent in the resummation-like schemes e.g. used in Refs [27, 29, 31].
In the latter scheme, one would need to use the matching function for Sivers function at N3LO,
which is not yet available [73]. For resummation-like schemes of scale-fixation, where the scales of
TMD distributions depend on b in an arbitrary manner, such an approach is inconsistent. In this
case, the orders of TMD evolution and matching coefficients must be adjusted to guarantee the
compensation of scaling logarithms.

3 Global analysis procedure

In this Section we discuss basic principles of the global QCD analysis, data selection, fit procedure,
and the study of the limits of TMD factorization.

3.1 Data selection

The TMD factorization theorem is derived in the limit of large-Q and a small relative transverse
momentum �, defined as

� =
|PhT |

zQ
(in SIDIS), � =

|qT |

Q
(in DY). (3.1)
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Figure 2. Distribution of the experimental data over the values of x and � Eq. (3.1).

The large-Q requirement is needed to suppress the power corrections ⇠ M
2
/Q

2 and ⇠ ⇤2
/Q

2,
where ⇤ is a general nonperturbative scale of QCD. Since M and ⇤ are ⇠ 1 GeV, we impose the
restriction hQi > 2 GeV, which limits possible power corrections to around 10 � 20% for the lowest
energy data points. The optimal values of � for applicability of TMD factorization were studied in
Ref. [65] (and were further confirmed by independent studies in Refs. [18, 67]), where it was shown
that phenomenologically TMD factorization is valid for � < 0.2 � 0.3, and is strongly violated for
large values of �. In the current study we impose � < 0.3, assuring that we accommodate data
points from as many experiments as possible, still preserving applicability of TMD factorization,
see Fig. 2. Summarizing our data selection cuts, we apply the following selection criteria

hQi > 2 GeV and � < 0.3. (3.2)

These restrictions are consistent with the applicability of the TMD factorization theorem as dis-
cussed in Ref. [65]. However, we hope that a part of power corrections cancels in the ratio of structure
functions measured experimentally (2.16, 2.22). The more stringent conditions (say � < 0.2) would
secure the TMD approach, but they are hardly applicable to the modern data, which is dominated
by the low-energy measurements. Our data selection cuts (3.2) are the most stringent among all
other extractions of Sivers function, compare to Refs. [19–22, 25–30].

The Sivers asymmetry in SIDIS has been measured by HERMES [34, 35], COMPASS [36, 39]5

and JLab Hall A [41] collaborations. DY measurements of the transverse spin-asymmetry were
performed by the COMPASS Collaboration [40] in the pion-induced DY process and by the STAR
Collaboration [43] in W

±
/Z production. After application of our data selection cuts (3.2) we

have 76 data points in total (63 for SIDIS, and 13 for DY). The distribution of the points in the
(x, �)-plane is shown in Fig. 2. The synopsis of data is presented in Table 1.

A large portion of the SIDIS data comes from a recent HERMES analysis [35] that uses a three-
dimensional kinematic binning and enlarged phase space. It is the three-dimensional binning that
allows a clean separation of the TMD factorization region. On the contrary, the Compass and JLab
measurements provide effectively “one-dimensional binning”, i.e., only one of the kinematic vari-
ables has narrow binning, while the rest are integrated over a wide range. Only the PhT -differential
measurements could be studied in such cases. The z-differential and x-differential measurements
have PhT integrated over the full kinematic range and thus could not be fully described by the
TMD factorization theorem. Even for the PhT -differential binning, the TMD factorization is hard
to apply due to the presence of z

�1 in the data selection rules (3.2). Almost every bin of COMPASS
5
We do not include COMPASS measurements [37, 38] because we are interested in multi-dimensional binning of

[39] and these two measurements overlap substantially in their experimental sample with [39].
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Dataset name Ref. Reaction # Points Av.Uncertainty

Compass08 [36]

d" + �⇤
! ⇡+ 1 / 9 1.2%

d" + �⇤
! ⇡� 1 / 9 1.1%

d" + �⇤
! K+ 1 / 9 3.4%

d" + �⇤
! K� 1 / 9 5.1%

Compass16 [39] p" + �⇤
! h+ 5 / 40 1.6%

p" + �⇤
! h� 5 / 40 2.0%

Hermes [35]

p" + �⇤
! ⇡+ 11 / 64 2.6%

p" + �⇤
! ⇡� 11 / 64 3.1%

p" + �⇤
! K+ 12 / 64 6.1%

p" + �⇤
! K� 12 / 64 10.8%

JLab [41, 42]

3He" + �⇤
! ⇡+ 1 / 4 13.9%

3He" + �⇤
! ⇡� 1 / 4 8.0%

3He" + �⇤
! K+ 1 / 4 7.0%

3He" + �⇤
! K� 0 / 4 –

SIDIS total 63
CompassDY [40] ⇡� + d" ! �⇤ 2 / 3 12.2%
Star.W+

[43]
p" + p ! W+ 5 / 5 16.1%

Star.W- p" + p ! W� 5 / 5 32.2%
Star.Z p" + p ! �⇤/Z 1 / 1 33.%
DY total 13
Total 76

Table 1. Synopsis of the data sets used in the analysis. The fourth column “# Points” shows the number
of data points selected after application of cuts from Eq. (3.2) and the total number of available data points.
The last column shows the average uncorrelated error for points in the data set (after application of (3.2)).

and JLab measurements borders with a region of the phase space where the TMD factorization is
strongly violated (PhT /z ⇠ Q). Consequently, we were forced to use the average kinematics to
include these data points into the fit. The ignorance of the bin integration effects is compensated
by large uncertainties of these measurements but could lead to a systematic error in our extraction.
We also use the averaged kinematics for HERMES measurement as it is suggested by the HER-
MES collaboration, because effects of the bin-integration are already included in the systematic
uncertainty of the data6.

In the case of DY measurements, the bin integration effects are larger due to the larger bin
sizes. These effects are especially significant for electroweak boson production, where the cross-
section changes rapidly. Thus, we perform the integration over the bin size separately for the
numerator and denominator of Eq. (2.22).

3.2 Fit procedure and estimation of uncertainties

To estimate the goodness of theory prediction against the experimental measurements we use the
�2-test function defined as

�2 =
nX

i,j=1

(mi � ti)V
�1
ij (mj � tj), (3.3)

6
We thank Gunar Schnell for clarification of this point.
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Let us explain our choice of CF values. There are several strategies for determination of CF
value used in the literature, compare e.g. with [22, 29, 31]. Usually, one uses the fit to central
values of data, and thus it is close to the true minimum of �2 test. However, such a choice is also
problematic because resulting parameters could lie outside of 68%CI (see e.g. [29]). Such a situation
could happen due to the over-fitting or due to the skewness of distributions. The usage of CF value
avoids these problems because averaging over SV19 replicas washes out possible over-fitted cases
and remains close to the global minimum of �2, and therefore is highly probable.

In the plots that represent our results, we do not show the uncertainty due to the unpolarized
SV19 input. The main reason is that it is small in comparison to the data-related uncertainty.
Another reason is that two uncertainty bands could not be combined to the total uncertainty as
a quadrature due to the essential non-Gaussianity of distributions. The accurate determination of
total uncertainty requires the generation of multiple replicas for each replica of SV19 and thus is
very computationally costly. Provided that the uncertainty due to the data is dominating in all
cases compared to the uncertainty due to the unpolarized distributions, we have decided to showcase
only the former. However, generally speaking, the uncertainty band due to the unpolarized input
is not negligible, contrary to the commonly used assumption. To our best knowledge, this is the
first estimation of such uncertainty in the analysis of polarized TMD distributions.

3.3 Test of the factorization region limit

0.2 0.3 0.4 0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 5. Comparison of �
2
/Npt for different values of �. The fits are made for SIDIS+DY at N3LO

setup. Gray numbers at the top of the figure show the number of points. At � = 0.375 the additional point
of ⇡-induced DY contributes with a very large �

2 (red line). For � > 0.375 only SIDIS points are added.

The TMD factorization works at small values of �, see Eq. (3.1), see also discussion in Ref. [92].
A priori, the size of power corrections, which violate the factorization approach, is not known. For
that reason, one should implement a data selection cut, Eq. (3.2), and exclude the data with large
values of �. In this section, we perform a survey of different values of � and thus test the boundary
for the TMD factorization for asymmetries.

To test TMD factorization’s applicability, we perform fits of the data selected with different
values of � in Eq. (3.2). The fits are executed at NNLO accuracy. In the region where the factoriza-
tion theorem is applicable, one expects the value of �2/Npt ' 1, and grows to larger values outside
of the applicability region. In other words, the plot of �2/Npt versus � should have a plateau in
the validity range of the factorization theorem. Such a test has been suggested in Ref. [65] and suc-
cessfully applied for unpolarized SIDIS and DY data analysis, where it was found that the optimal
data cut is � ⇠ 0.2 � 0.25, see Refs. [18, 67]. It has been shown that for DY processes, the data
with � > 0.3 are poorly described by the TMD factorization formula. In contrast, the situation for
SIDIS is better, and one could go up to � ⇠ 0.3 � 0.35 [18] without significant loss of quality of the
fit. These numbers served as the rationale for the initial estimation of our current data selection
cut in Eq. (3.2).

– 16 –
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The results of our current test are shown in Fig. 5, which has a clear plateau �
2
/Npt ' 1 for

� < 0.4. The quality of the fit drops drastically for � > 0.4 for SIDIS. This result agrees with the
general expectations. Indeed, one could expect that power corrections partially cancel in asymmetry,
and thus the kinematic range for the applicability of factorization theorems becomes slightly wider.
Since, in the SIDIS unpolarized case � < 0.3 � 0.35 the observation of rough agreement for � . 0.4
is anticipated.

The situation for DY is less certain because the total number of points is small. All points
included into the fit have � < 0.22 (see Fig. 2). There is only one additional point to include. This
point is measured in pion-induced DY at COMPASS [40], and it has � = 0.36 and a wide qT -bin
up to values qT ' Q. This point is outside of the applicability range, and the prediction strongly
disagrees with the measurement (�2

⇠ 8). The main source of the disagreement is the denominator
in Eq. (2.22), which becomes negative. The negative values for cross-section are typical for TMD
factorization formula in the region beyond its validity. To get the positive cross-section valid in the
full range of qT one should match it to the collinear picture via the so-called Y -term [4]. This goes
far beyond the present study.

We conclude that even though the region of TMD factorization widens slightly for asymmetries,
one has to be cautious when including the data outside of the TMD factorization region. In the
following sections, we analyze only the data with � < 0.3. This value corresponds to our best
estimate of the region of data appropriate for the TMD factorization approach description. Future
work that will include matching to the collinear factorization is needed to widen the region of the
data used in the global analysis.

4 Results of extraction

This is the main Section of our work. We describe in detail results of N3LO extraction of the
Sivers function, also presented in Ref. [10]. We discuss the Sivers function in momentum and
position spaces, discuss positivity constraints, show the 3D tomography of the nucleon via the
Sivers function, extract the Qiu-Sterman functions, and study the significance of the sign change of
the Sivers function between SIDIS and DY.

4.1 Fit of the data

Using the approach described in the previous sections, we performed several fits with different
setups. In particular, we distinguish the fits with and without inclusion of DY data, with a purpose
to estimate the universality of the Sivers function. Also we performed separate fits at NNLO and
N3LO perturbative precision for the TMD evolution. The synopsis of �

2 values is presented in
Table 2. The distribution of contributions to �

2 per experiments is shown in Table 3. The values
of nonperturbative parameters extracted in these fits are given in Table 4 and in Fig. 6.

Name �
2
/Npt[SIDIS] �

2
/Npt[DY] �

2
/Npt[total]

SIDIS at NNLO 0.88+0.13
+0.03 1.29+0.45

�0.30 no fit 0.95+0.16
+0.00

SIDIS+DY at NNLO 0.90+0.13
+0.02 0.94+0.25

�0.01 0.91+0.13
+0.04

SIDIS at N3LO 0.87+0.13
+0.03 1.23+0.50

�0.24 no fit 0.93+0.16
+0.01

SIDIS+DY at N3LO 0.88+0.15
+0.04 0.90+0.31

+0.00 0.88+0.15
+0.05

Table 2. Values for �
2
/Npt in different fits. Note, that for the cases included in the fit the CF value of

�
2 lies outside the 68%CI. This is because CF realizes the minimum of �2 distribution, whereas the 68%CI

(roughly) excludes 16% of boundary replicas.
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 Unbiased parametrization 

 No tension between SIDIS and DY data — universality 

 Good convergence of the fit for all data sets
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Figure 7. Description of HERMES data [35] for ⇡
± and K

±, only data with � < 0.5 are shown. The
data are presented as the function of x and the 3D binning of the data is indicated by the bin sizes in PhT

(GeV) and z. Solid (open) symbols data used (not used) in the fit. Blue line is the CF and the blue box is
68%CI of the fit of the data and prediction for the data not used in the fit.

differences are the TMD evolution implementation (⇣-prescription vs. CSS-like ansatz) and the
nonperturbative model for the Sivers function. In particular, our parametrization for the Sivers
function is more flexible compared to Ref. [31] and allows sea quark contributions to be large in the
large-x region.

In the remainder of the Section, we will discuss details of the description of various SIDIS and
DY data sets coming from various experiments considered in this analysis (see also Table 3). We
present results of the description and discuss the data.

HERMES data set [35]. In our fit we use the latest updated data on Sivers asymmetry in
SIDIS by the HERMES Collaboration [35] on the proton target for ⇡

±, K
±. The incident electron

energy is Plab = 27.5 GeV. Events were selected subject to the requirements Q
2 > 1 GeV2, W

2 >
10 GeV2, 0.1 < y < 0.95, and 0.023 < x < 0.6. Hadrons were accepted if 0.2 < z < 0.7. The data
are presented in a three-dimensional binning in x, z, and PhT (GeV). The correlated uncertainty
of the data is 7.3% due to the accuracy of the target polarization determination. Importantly, the
systematic uncertainty of HERMES data already includes possible effects of the bin-integration, and
thus the theory prediction for this data set must be evaluated using the average bin kinematics. For
the SIDIS subset, the largest �

2
/Npt is for K

� production measured at HERMES (typical values
⇠ 1.6 for 12 points). The next-to-the-largest �

2
/Npt is for K

+-production measured at Hermes
(typical values ⇠ 1.3 for 12 points). The rest of the SIDIS data, for ⇡

± and h
±, have partial
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COMPASS SIDIS data
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Figure 10. Description of multi-dimensional COMPASS SIDIS proton data [39]. Sivers asymmetry for
z > 0.1 in the four Q

2-ranges as a function of x, z and PhT for unidentified charged hadrons h
±, only data

with � < 0.5 are shown. Solid (open) symbols data used (not used) in the fit. Blue line is the CF and the
blue box is 68%CI of the fit of the data and prediction for the data not used in the fit.

Compass08 [36] and Compass16 [39] data sets. COMPASS measured the Sivers asymmetry
using different targets (iso-scalar samples from 2003-2004 data [36] and proton sample for unidenti-
fied charged hadrons from 2010, multi-dimensional data [39]) with incident muon energy Plab = 160
GeV. In these measurements, the cuts on the photon virtuality Q

2 > 1 GeV2 and the mass of the
hadronic final state W

2
> 25 GeV2 were applied, as well as 0.1 < y < 0.9. To simulate the isospin

target (deuteron), we make the iso-spin rotation for components of the Sivers function

f
?
1T,u d = f

?
1T,d d =

f
?
1T,u p + f

?
1T,d p

2
. (4.1)

The measurement Compass08 is made for ⇡
± and K

± fragmenting hadrons (we omit the ⇡
0 and

K
0 measurements because SV19 extraction does not have these fragmentation functions). The

Compass16 measurements is made for charged hadrons h
±, which in SV19 are approximated as sum

of pion and kaon components h
± = ⇡

± + K
± ignoring the higher-mass contribution. We show the

description of COMPASS SIDIS data [36] in Fig. 9 and [39] in Fig. 10. One can see that, as in
previous cases, the data description is good even for the data not used in the fit.

CompassDY [40] data set. The data were taken using a high-intensity ⇡
� beam of 190 GeV

and the transversely polarized isoscalar NH3 target. Sivers asymmetry was extracted using di-muon
events with the invariant mass between 4.3 GeV and 8.5 GeV. The measured asymmetry, AUT , is
given in (2.24). Notice that our definition of AUT from Eq. (2.24) corresponds to the definition
from Ref. [40] AUT = A

sin�S

T . The data is presented in the one-dimensional binnings over x⇡, xN ,
xF , qT . In non-qT binning, the integration over qT spans up to 5 GeV, i.e., includes the domain
with qT > Q. Therefore, only the qT -binned data could be analyzed within TMD factorization. We
show a description of the data in Fig. 11. One can see that the resulting Sivers function describes
well the data on qT -dependence that we use in the fit and predict the data on xF -dependence not
used in the fit.

STAR [43] data set. The STAR Collaboration at RHIC measured the transverse single-spin
asymmetry of weak boson ( charged (W±) and neutral (Z/�)) production in polarized proton-proton
collisions at

p
s=500 GeV. It is described by AN (2.23) with inclusion of modified factors (2.26, 2.27).

The results were presented as a function of rapidity, y, and the bosons’ transverse momentum, qT .
The measured values of asymmetry are much higher (up 60%) than typical asymmetries in SIDIS,
which present a certain problem in their description. We show the description of STAR data [43]
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in Fig. 12. One can see that our global analysis gives a good description of qT dependent data
for W

± production. We also describe well y dependent data that is not used directly in the fit
for W

± and a single point for Z-boson production that we use in the fit. It is the first agreement
with the data of extraction of the Sivers function with TMD evolution to our best knowledge.
For the DY subset, the main contribution to the �

2
/Npt is due to a single Z�boson production

point (AN = 0.6 ± 0.33) measured at RHIC. Despite the large error, this single point contributes
significantly with ��

2 = (2.9, 1.6, 2.8, 1.6) into fits (SIDIS at NNLO, SIDIS+DY at NNLO, SIDIS
at N3LO, SIDIS+DY at N3LO). Let us notice that for W and Z bosons productions, one should
also account for contributions of c and b quarks, which are currently neglected.

N3LO fit does not essentially change the result of the fit compared to NNLO. It is expected
because the difference between NNLO and N3LO evolution is relatively marginal, see Fig. 1, espe-
cially in comparisons to the large uncertainties of experimental measurements of asymmetries. The
values of �

2 are practically unchanged. As for the values of parameters, we observe that they agree
within the error-bands, thus corroborating the stability of evolution effects and the fit results.

4.2 Sivers function in the position and the momentum spaces

The extracted Sivers function in position space for u and d quarks is shown in Fig. 13. Its values have
notably large uncertainties, which we demonstrate by shaded areas. Another distinctive feature of
our extraction is a non-positive definiteness of the Sivers function. The Sivers function does not
have the probabilistic interpretation The Sivers function is related to a difference of unpolarized
quark densities in momentum space inside transversely polarized protons, Eq. (4.2); thus, it can be
positive or negative, and can have nodes [104, 105], which is realized by the parameter ✏. Moreover,
the presence of a node is predicted by various models [104, 106–108]. The Sivers function for u

quark in our extraction, see Fig. 13, turns positive at large-x. However, it can stay negative within
68%CI. Although such behavior looks unusual, it does not contradict any known properties of the
Sivers function.

In the momentum representation the TMD distributions for unpolarized quarks are defined as7
Z

d
2
b

(2⇡)2
e
i(bkT )�[�+]

q h(x, b; µ, ⇣) = f1;q h(x, kT ; µ, ⇣) �
✏
µ⌫
T kTµST⌫

M
f
?
1T ;q h(x, kT ; µ, ⇣), (4.2)

7
Notice that we do not distinguish the symbols for the Sivers functions in the position and the momentum spaces,

they are related by the Fourier transform of Eq. (4.4). It is intended by the functional arguments, b or kT , which

function we use.
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Figure 11. Description of Compass DY data [40] as a function of xF and qT (GeV). Solid (open) symbols
data used (not used) in the fit. Blue line is the CF and the blue box is 68%CI of the fit of the data and
prediction for the data not used in the fit.
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Figure 12. Description of the transverse single-spin asymmetry data [43] for W± and Z boson production
measured by STAR in polarized proton-proton collisions at

p
s = 500 GeV. Left column, the data as a

function of y for W
± and Z, the right column, the data as a functions of qT GeV for W

±. Solid (open)
symbols data used (not used) in the fit. Blue line is the CF and the blue box is 68%CI of the fit of the data
and prediction for the data not used in the fit.

Figure 13. The (b, x)-landscape of the optimal Sivers function f
?
1T (x, b) for d-quark (the left panel) and

u-quark (the right panel). The grid shows the CF value, whereas the shaded (blue and green) regions on
the boundaries demonstrate the 68%CI.

where kT is the two-component Euclidean vector of traverse momentum, and �[�+]
q h is given by the

left-hand-side of Eqn. (2.1). Performing the angular integration in Eq. (4.2) we find

f1;q h(x, kT ; µ, ⇣) =

Z 1

0

bdb

2⇡
J0(b|kT |)f1;q h(x, b; µ, ⇣), (4.3)

f
?
1T ;q h(x, kT ; µ, ⇣) = M

2

Z 1

0

bdb

2⇡

b

|kT |
J1(b|kT |)f?1T ;q h(x, b; µ, ⇣). (4.4)

The momentum space representation has complicated evolution properties since the TMD evolution
factor is multiplicative in the position space. The notion of the optimal TMD distribution is less
useful in the momentum space because it involves the integration over all scales. For that reason,
we only show the TMD distributions in the momentum space at a fixed scale.
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(a) (b)

(c) (d)

Figure 14. Sivers function in the momentum space (black solid line) for u, d, sea, and s quarks at
x = 0.1 and µ = 2 GeV. The blue band is the 68%CI. The gray dashed line is the unpolarized TMD PDF
extracted in SV19 shown for the comparison (for u and sea-quark the Sivers function is multiplied by �1

and sea-quark the Sivers function is compared to ū unpolarized TMD PDF).

The extracted Sivers function is shown in Fig. 14. The Fourier transformation, Eq. (4.4),
effectively inverses the ranges of variables. Therefore, a large uncertainty at large-b (given by
parameters r0,1,2) transforms to a large uncertainty at small-kT . For comparison, we also show
the values and uncertainties of the unpolarized TMD PDFs extracted in SV19 fit. We observe
that the Sivers function’s typical size is about 4-5 times as small as the corresponding unpolarized
distribution. Figure 14 shows the functions at x = 0.1, for other values of x of the data used in our
fit x ⇠ 0.01 � 0.25 profiles are similar.

Figure 15. Sivers function in the momentum space for u quark at x = 0.1 as a function of kT (GeV).
The bands are the 68%CI. The calculations are performed at four different values of Q.
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Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato (2020)

(a) (b)

Figure 15. The comparison of the Sivers function extractions in the momentum space for u, d, quarks
at x = 0.1 and µ = 2 GeV. Our results, black solid line and the blue band, are compared to JAM20 [30]
(gray dashed line with the error corridor hatched), PV20 [29] (magenta hatched region), EKT20 [31] (violet
hatched region, dashed line) .

Figure 16. Sivers function in the momentum space for u quark at x = 0.1 as a function of kT (GeV).
The bands are the 68%CI. The calculations are performed at four different values of Q.

can see, the evolution modifies the shape and the amplitude of the Sivers function.

4.3 Positivity constraints for the Sivers function

In Ref. [109] the positivity constraints for TMD distributions were derived assuming the positive-
definiteness of the polarization matrix due to its probabilistic interpretation in the parton model.
In particular, the positivity constraint involving the Sivers function is

k2
T

M2

�
g1T (x, kT )2 + f?

1T (x, kT )2
�
6 f1(x, kT )2, (4.5)

where g1T is the worm-gear T or Kotzinian-Mulders [110, 111] function. Generally, such positivity
constraints are not respected in the quantum field theory due to renormalization effects, which are
only enhanced in the TMD case by renormalizing rapidity divergences. Recall in particular that
even cross-sections become negative in the region outside of the TMD factorization validity. In some
cases the violation of positivity constraints is very significant, e.g., for linearly polarized gluon TMD
PDF discussed in Ref. [112]. As far as our analysis includes the TMD evolution, we expect that
the positivity constraint is not applicable, given that it is based on the tree order approximation
argument. Nonetheless, it is instructive to check the constraint from Eq. (4.5).
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Figure 14. Sivers function in the momentum space (black solid line) for u, d, sea, and s quarks at
x = 0.1 and µ = 2 GeV. The blue band is the 68%CI. The gray dashed line is the unpolarized TMD PDF
extracted in SV19 shown for the comparison (for u and sea-quark the Sivers function is multiplied by �1

and sea-quark the Sivers function is compared to ū unpolarized TMD PDF).

The extracted Sivers function is shown in Fig. 14. The Fourier transformation, Eq. (4.4),
effectively inverses the ranges of variables. Therefore, a large uncertainty at large-b (given by
parameters r0,1,2) transforms to a large uncertainty at small-kT . For comparison, we also show
the values and uncertainties of the unpolarized TMD PDFs extracted in SV19 fit. We observe
that the Sivers function’s typical size is about 4-5 times as small as the corresponding unpolarized
distribution. Figure 14 shows the functions at x = 0.1, for other values of x of the data used in our
fit x ⇠ 0.01 � 0.25 profiles are similar.
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Figure 15. Sivers function in the momentum space for u quark at x = 0.1 as a function of kT (GeV).
The bands are the 68%CI. The calculations are performed at four different values of Q.
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(a) (b)

(c) (d)

Figure 17. Tomographic scan of the nucleon via the momentum space quark density function
⇢1;q h"(x,kT ,ST , µ) defined in Eq. (4.7) at x = 0.1 and µ = 2 GeV. Panel (a) is for u quarks, panel
(b) is for d quark, panel (c) is for ū quark, and panel (d) is for s quark. The variation of color in the plot
is due to variation of replicas and illustrates the uncertainty of the extraction. The nucleon polarization
vector is along ŷ-direction. White cross indicates the position of the origin (0, 0) in order to highlight the
shift of the distributions along x̂-direction due to the Sivers function.

polarization, we introduce the momentum space quark density function

⇢1;q h"(x,kT ,ST , µ) = f1;q h(x, kT ; µ, µ
2) �

kTx

M
f
?
1T ;q h(x, kT ; µ, µ

2), (4.7)

where kT is a two-dimensional vector (kTx, kTy). This function reflects the TMD density of un-
polarized quark q in the spin-1/2 hadron totally polarized in ŷ-direction, ST = (Sx, Sy), where
Sx = 0, Sy = 1, compare to Eq. (4.2). In Fig. 17 we plot ⇢ at x = 0.1 and µ = 2 GeV. To present
the uncertainty in unpolarized and Sivers function, we randomly select one replica for each point of
a figure. Thus, the color fluctuation roughly reflects the uncertainty band of our extraction. The
presented pictures have a shift of the maximum in kTx, which is the influence of Sivers function that
introduces a dipole modulation of the momentum space quark densities. This shift corresponds to
the correlation of the Orbital Angular Momentum (OAM) of quarks and the nucleon’s spin. One
can see from Fig. 17 that u quark has a negative correlation and d quark has a positive correlation.
Without OAM of quarks, such a correlation and the Sivers function are zero, and thus we can
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Figure 17. Tomographic scan of the nucleon via the momentum space quark density function
⇢1;q h"(x,kT ,ST , µ) defined in Eq. (4.7) at x = 0.1 and µ = 2 GeV. Panel (a) is for u quarks, panel
(b) is for d quark, panel (c) is for ū quark, and panel (d) is for s quark. The variation of color in the plot
is due to variation of replicas and illustrates the uncertainty of the extraction. The nucleon polarization
vector is along ŷ-direction. White cross indicates the position of the origin (0, 0) in order to highlight the
shift of the distributions along x̂-direction due to the Sivers function.

polarization, we introduce the momentum space quark density function

⇢1;q h"(x,kT ,ST , µ) = f1;q h(x, kT ; µ, µ
2) �

kTx

M
f
?
1T ;q h(x, kT ; µ, µ

2), (4.7)

where kT is a two-dimensional vector (kTx, kTy). This function reflects the TMD density of un-
polarized quark q in the spin-1/2 hadron totally polarized in ŷ-direction, ST = (Sx, Sy), where
Sx = 0, Sy = 1, compare to Eq. (4.2). In Fig. 17 we plot ⇢ at x = 0.1 and µ = 2 GeV. To present
the uncertainty in unpolarized and Sivers function, we randomly select one replica for each point of
a figure. Thus, the color fluctuation roughly reflects the uncertainty band of our extraction. The
presented pictures have a shift of the maximum in kTx, which is the influence of Sivers function that
introduces a dipole modulation of the momentum space quark densities. This shift corresponds to
the correlation of the Orbital Angular Momentum (OAM) of quarks and the nucleon’s spin. One
can see from Fig. 17 that u quark has a negative correlation and d quark has a positive correlation.
Without OAM of quarks, such a correlation and the Sivers function are zero, and thus we can
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 At small bT the Sivers function is related to the twist-3 function
Scimemi, Tarasov, Vladimirov (19)

Z 1

�1
d⇠

Z 1

0
dy�(x � y⇠)

✓
�

ȳ

Nc
Tq(�⇠, 0, ⇠; µ) +

3yȳ

2⇠
G(+)(�⇠, 0, ⇠; µ)

◆
+ O(a2

s)
i

+ O(b2)

)
,

where ȳ = 1 � y, Nc = 3 is the number of colors, CF = (N2
c � 1)/(2Nc) = 4/3, as = g2/(4⇡)2

is the strong coupling constant, and Lµ = ln(µ2b2e2�E/4). The function T is the twist-3 collinear
distribution defined by the matrix element

hp, s|gq̄(z1n)[z1n, z2n] 6n Fµ+(z2n)[z2n, z3n]q(z3n)|p, si (4.9)

= 2✏µ⌫T s⌫(np)2M

Z 1

�1
dx1dx2dx3�(x1 + x2 + x3)e

�i(np)(x1z1+x2z2+x3z3)Tq(x1, x2, x3),

where Fµ⌫ is the gluon-strength tensor, n is a light-cone vector. The function G(+) is a similar
matrix element with three Fµ+’s. Its explicit form is not important for the present discussion
and can be found in Ref. [73]. The notation P ⌦ T refers to the leading order evolution kernel
for Tq(�x, 0, x). It has the form of a complicated integral convolution that involves function Tq,
�Tq (the analog of T with �µ

! �µ�5) and G(±). The expression for this kernel can be found in
Refs. [73, 97]. It is crucial that the evolution term involves twist-3 function for a generic argument
(x1, x2, x3), but not just (�x, 0, x) as for QS matrix element. Moreover, the dominant contribution
to this convolution is given by the integral along (�x, x � ⇠, ⇠)-line with ⇠ 2 [x, 1], whereas the
contribution from the QS-component (�⇠, 0, ⇠) is suppressed by almost two orders of magnitude
[97, 115]. The scale µ in (4.8) is the scale of OPE, and present only on the right-hand-side of
Eq. (4.8). The sum of all terms becomes µ independent, so that the left-hand-side, corresponding
to the optimal Sivers function, does not depend on µ.

The right-hand side of Eq. (4.8) depends on four nonperturbative functions, each of which is a
function of two variables (x1, x2, �x1 � x2). To reduce the number of unknowns we set

µ = µb = 2e��E/b, (4.10)

such that Lµ = 0. This choice essentially reduces number of functions and parameteric freedom
since the remaining functions are only Tq(�x, 0, x) and G(+)(�x, 0, x), i.e. QS-functions for the
quark and the gluon. The resulting expression can be inverted by means of the perturbation theory

Tq(�x, 0, x; µb) = �
1

⇡

✓
1 + CFas(µb)

⇡2

6

◆
f?1T ;q h(x, b) �

as(µb)

⇡

Z 1

�1
d⇠

Z 1

0
dy�(x � y⇠)

⇥

⇣ ȳ

⇡Nc
f?1T,q h(⇠, b) +

3yȳ

2⇠
G(+)(�⇠, 0, ⇠; µb)

⌘
+ O(a2

s) + O(b2). (4.11)

This expression can be written as

Tq(�x, 0, x; µb) = �
1

⇡

✓
1 + CFas(µb)

⇡2

6

◆
f?1T ;q h(x, b)

�
as(µb)

⇡

1Z

x

dy

y

h ȳ

Nc
f?1T ;q h

✓
x

y
, b

◆
+

3y2ȳ

2x
G(+)

✓
�

x

y
, 0,

x

y
; µb

◆i
+ O(a2

s) + O(b2) . (4.12)

To use this expression, we should select a reasonably small value of b, such that power corrections
are negligible. Simultaneously, b could not be too close to 0 because this region corresponds to a
very high-energy and thus unreliable in the current extraction. The reasonable compromise is
b ' 0.11 GeV�1 such that µb = 10 GeV. In this case, we could estimate the introduced systematic
uncertainty due to omitted power corrections as O(M2b2) ⇠ 1%, which is smaller than perturbative
uncertainties at this scale. Extraction of the QS function at lower scales, µ ⇠ 2 GeV, is not
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 Evolution of T is complicated and non closed

 Beyond LO it is complicated
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 Invert the formula for Operator Product Expansion of Sivers via the 
QS functions

4

FIG. 3. Qiu-Sterman function at µ = 10 GeV for dif-
ferent quark flavors, derived from the Sivers function via
Eq. (13). The black line shows the CF value and blue band
shows 68%CI. The brown band shows the band obtained by
adding the gluon contribution G(+). We compare our results
to JAM20 [35] (gray dashed lines) and ETK20 [34] (orange
dashed lines).

not exclude the same sign of Sivers functions in DY and
SIDIS. The sign of the sea-quark Sivers function plays
here the central role. Indeed, the sign of DY cross-
section is mostly determined by the sea-contribution due
to favored q + q̄ ! W/Z/� sub-process, whereas the sea-
contribution in SIDIS is suppressed. Therefore, with the
current data precision, the flip of the sign for Nsea pa-

rameter alone is sufficient to describe the data and almost
compensates the effect of the overall sign-flip (1) at the
level of the cross-section. The future data from RHIC
and COMPASS together with EIC and JLab will allow
us to establish the confirmation of the sign change (1).

Extracted Sivers functions The extracted Sivers
functions in b-space for u and d-quarks are shown in
Fig. 2. One can see that our results confirm the signs
of u-quark (negative) and d-quark (positive) at middle-x
range known from the previous analyses [20–31, 33–35],
and also shows a node for u-quark at large-x. We have
not explicitly used the positivity relation [71] of Sivers
functions because it is only a LO statement and can be
violated in higher order calculations. However, we veri-
fied numerically that our results do not exhibit any sub-
stantial violation of positivity bounds.

The magnitude of s and sea quarks contribution in our
fit is substantially different from other extractions where
the the biased anzatz f?1T (x) / f1(x) is used [22, 24–
31, 33, 34] and the non-valence contribution is artificially
suppressed. In our case, the sea- and s-quark Sivers
functions are comparable in size with u and d-quarks, at
x > 0.1 (and vanish at x < 0.1). Our unbiased extraction
of the Sivers function reproduces large SSA measured in
the DY W±/Z processes, see Fig. 1.

Determination of the Qiu-Sterman function The
Sivers function at small-b can be expressed via the oper-
ator product expansion (OPE) through the twist-3 dis-
tributions [56, 57, 72]. At the OPE scale µ = µb ⌘

2 exp(��E)/b the NLO matching expression [56] depends
only on QS function and can be inverted. We obtain the
following relation
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where ȳ = 1 � y, ↵s is the strong coupling constant,
Tq and G(+) are QS quark and gluon functions. This
expression is valid only for small (non-zero) values of b.
We use b ' 0.11 GeV�1 such that µb = 10 GeV. The
resulting QS-functions are shown in Fig. 3. To estimate
the uncertainty due to the unknown gluon contribution
we allow for G(+) = ±(|Tu| + |Td|). The resulting 68%CI
uncertainty band and comparison to Refs. [34, 35] are
also shown in Fig. 3.

Conclusions. In this letter, we have presented the
first extraction of the Sivers function that consistently
utilizes previously extracted unpolarised proton and pion
TMDs, and uses SIDIS, pion-induced Drell-Yan, and

W±/Z-bozon production experimental data. The extrac-
tion is performed at unprecedented N3LO perturbative
precision within the ⇣-prescription that allows us to un-
ambiguously relate the Sivers function and QS function.
This relation has been used to obtain QS function and to
evaluate the influence of the unknown gluon QS function.
We also examined the significance of the predicted sign
change of Sivers functions in SIDIS and DY processes.
Our results compare well in magnitude with the exist-
ing extractions [20–35] and confirm the signs of Sivers
functions for u and d quarks while we also obtain non
negligible Sivers functions for anti-quarks.

Our results set a new benchmark and the standard of
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FIG. 3. Qiu-Sterman function at µ = 10 GeV for dif-
ferent quark flavors, derived from the Sivers function via
Eq. (13). The black line shows the CF value and blue band
shows 68%CI. The brown band shows the band obtained by
adding the gluon contribution G(+). We compare our results
to JAM20 [35] (gray dashed lines) and ETK20 [34] (orange
dashed lines).

not exclude the same sign of Sivers functions in DY and
SIDIS. The sign of the sea-quark Sivers function plays
here the central role. Indeed, the sign of DY cross-
section is mostly determined by the sea-contribution due
to favored q + q̄ ! W/Z/� sub-process, whereas the sea-
contribution in SIDIS is suppressed. Therefore, with the
current data precision, the flip of the sign for Nsea pa-

rameter alone is sufficient to describe the data and almost
compensates the effect of the overall sign-flip (1) at the
level of the cross-section. The future data from RHIC
and COMPASS together with EIC and JLab will allow
us to establish the confirmation of the sign change (1).

Extracted Sivers functions The extracted Sivers
functions in b-space for u and d-quarks are shown in
Fig. 2. One can see that our results confirm the signs
of u-quark (negative) and d-quark (positive) at middle-x
range known from the previous analyses [20–31, 33–35],
and also shows a node for u-quark at large-x. We have
not explicitly used the positivity relation [71] of Sivers
functions because it is only a LO statement and can be
violated in higher order calculations. However, we veri-
fied numerically that our results do not exhibit any sub-
stantial violation of positivity bounds.

The magnitude of s and sea quarks contribution in our
fit is substantially different from other extractions where
the the biased anzatz f?1T (x) / f1(x) is used [22, 24–
31, 33, 34] and the non-valence contribution is artificially
suppressed. In our case, the sea- and s-quark Sivers
functions are comparable in size with u and d-quarks, at
x > 0.1 (and vanish at x < 0.1). Our unbiased extraction
of the Sivers function reproduces large SSA measured in
the DY W±/Z processes, see Fig. 1.

Determination of the Qiu-Sterman function The
Sivers function at small-b can be expressed via the oper-
ator product expansion (OPE) through the twist-3 dis-
tributions [56, 57, 72]. At the OPE scale µ = µb ⌘

2 exp(��E)/b the NLO matching expression [56] depends
only on QS function and can be inverted. We obtain the
following relation
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where ȳ = 1 � y, ↵s is the strong coupling constant,
Tq and G(+) are QS quark and gluon functions. This
expression is valid only for small (non-zero) values of b.
We use b ' 0.11 GeV�1 such that µb = 10 GeV. The
resulting QS-functions are shown in Fig. 3. To estimate
the uncertainty due to the unknown gluon contribution
we allow for G(+) = ±(|Tu| + |Td|). The resulting 68%CI
uncertainty band and comparison to Refs. [34, 35] are
also shown in Fig. 3.

Conclusions. In this letter, we have presented the
first extraction of the Sivers function that consistently
utilizes previously extracted unpolarised proton and pion
TMDs, and uses SIDIS, pion-induced Drell-Yan, and

W±/Z-bozon production experimental data. The extrac-
tion is performed at unprecedented N3LO perturbative
precision within the ⇣-prescription that allows us to un-
ambiguously relate the Sivers function and QS function.
This relation has been used to obtain QS function and to
evaluate the influence of the unknown gluon QS function.
We also examined the significance of the predicted sign
change of Sivers functions in SIDIS and DY processes.
Our results compare well in magnitude with the exist-
ing extractions [20–35] and confirm the signs of Sivers
functions for u and d quarks while we also obtain non
negligible Sivers functions for anti-quarks.

Our results set a new benchmark and the standard of
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Compares well with

Jam 20 (LO)


PV20 (NLL)


EKT20 (NNLL)


Jam20: Cammarota, Gamberg, Kang, 

Miller, Pitonyak, Prokudin, Rogers, Sato (2020)

Bacchetta, Delcarro, Pisano, Radici (2020)

Echevarria, Kang, Terry (2020)

Sea quark functions 

is still a mystery to explore

(a) (b)

(c) (d)

Figure 20. Qiu-Sterman function at µ = 10 GeV for different quark flavors, derived from the Sivers
function (4.11). Our results are labeled as BPV20. The black line shows the CF value. Blue band shows
68%CI without gluon contribution added. The green band shows the band obtained by adding the gluon
contribution estimated to be G

(+) = ±(|Td|+|Tu|) as described in the text. Our results are compared
to JAM20 [30] (gray dashed line with the error corridor hatched), PV20 [29] (magenta hatched region),
EKT20 [31] (violet hatched region, dashed line).

reliable in this approach as the corresponding value of b ⇠ 0.5 GeV�1 is relatively large, and the
power corrections become to be not negligible. The gluon function G(+) is also unknown, so we
set it to be zero. The resulting QS functions are shown in Fig. 20 by the black line, with 68%CI
(blue band). To estimate the uncertainty due to the unknown gluon contribution we approximate
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➤ First experimental hints on the sign change, W/Z production


➤ Pion induced Drell-Yan
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KQ → Kang, Qiu `09

First measurement of transverse-spin-dependent azimuthal asymmetries . . . 5
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Fig. 5: Extracted Drell-Yan TSAs related to Sivers, transversity and pretzelosity TMD PDFs (top to
bottom). Error bars represent statistical uncertainties. Systematic uncertainties (not shown) are 0.7 times
the statistical ones.
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Fig. 6: The measured mean Sivers asymmetry and the theoretical predictions for different Q2 evolution
schemes from Refs. [19] (DGLAP), [20] (TMD1) and [21] (TMD2). The dark-shaded (light-shaded)
predictions are evaluated with (without) the sign-change hypothesis. The error bar represents the total
experimental uncertainty.

values from this measurement is available on HepData [37]. The last column in Fig. 5 shows the results
for the three extracted TSAs integrated over the entire kinematic range. The average Sivers asymmetry
AsinjS

T is found to be above zero at about one standard deviation of the total uncertainty. In Fig. 6, it
is compared with recent theoretical predictions from Refs. [19, 20, 21] that are based on different Q2-
evolution approaches. The positive sign of these theoretical predictions for the DY Sivers asymmetry was
obtained by using the sign-change hypothesis for the Sivers TMD PDFs, and the numerical values are
based on a fit of SIDIS data for the Sivers TSA [9, 11, 12]. The figure shows that this first measurement
of the DY Sivers asymmetry is consistent with the predicted change of sign for the Sivers function.

The average value for the TSA Asin(2jCS�jS)
T is measured to be below zero with a significance of about

two standard deviations. The obtained magnitude of the asymmetry is in agreement with the model
calculations of Ref. [38] and can be used to study the universality of the nucleon transversity function.
The TSA Asin(2jCS+jS)

T , which is related to the nucleon pretzelosity TMD PDFs, is measured to be above
zero with a significance of about one standard deviation. Since both Asin(2jCS�jS)

T and Asin(2jCS+jS)
T are

related to the pion Boer-Mulders PDFs, the obtained results may be used to study this function further and
to possibly determine its sign. They may also be used to test the sign change of the nucleon Boer-Mulders
TMD PDFs between SIDIS and DY as predicted by QCD [6, 7, 8], when combined with other past and
future SIDIS and DY data related to target-spin-independent Boer-Mulders asymmetries [39, 40, 41].

Sign change
No sign change

COMPASS Collab. Phys. Rev. Lett. 119, 112002 (2017)
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2-distribution with 75 d.o.f. .

f?
1T [DY ] = �f?

1T [SIDIS] f?
1T [DY ] = +f?

1T [SIDIS]

�2/Npt 0.88+0.16
+0.06 1.00+0.22

+0.08

p-value (CF) 0.74 0.44
p-value 68%CI [0.60, 0.34] [0.28, 0.08]

p-value 68%CI (SIDIS) [0.67, 0.42] [0.53, 0.11]
p-value 68%CI (DY) [0.56, 0.17] [0.68, 0.02]

Table 5. Comparison of �2 and p-values between the fit with and without sign-change for Sivers function.

To make a test of the sign change, we performed an independent fit of SIDIS and DY data
with f?

1T [SIDIS] = +f?
1T [DY ], i.e., assuming the Sivers function does not change the sign. The

fit is performed at N3LO. The comparison of fits with and without sign-change is presented in
Table 5. The CV fit demonstrates good values of �2/Npt = 1.00, with the 68%CI being [1.08,
1.22]. The (normalized) histograms of �2 replicas for same- and opposite-sign fits are shown in
Fig. 20, together with �2 distribution for Npt � 1=75 degrees of freedom. The p-values of different
cases are calculated as areas under the sampling distribution in [�2

tot, 1) interval, and given in
Table 5. The case f?

1T [SIDIS] = +f?
1T [DY ] has somewhat higher �2, and consequently lower p-value.

Nonetheless, the difference is not large, and 68%CI almost overlap. Therefore, we conclude that
one cannot strictly discriminate with the current experimental data the possibility of the Sivers
function having the same sign in DY and SIDIS.

The fit with f?
1T [SIDIS] = +f?

1T [DY ] demonstrates very different features in comparison to the
fit with the sign-change. In particular, the distribution of �2 for SIDIS and DY independently is
broader. So, 68% CI of �2/Npt for SIDIS data is [0.96, 1.21] and for DY data is [0.80, 1.88] (compare
to [0.90, 1.00] and [0.81, 1.27] in the case of the sign-change, correspondingly). Simultaneously, the
68%CI for the total �2 is broader and located at higher values. This indicates a tension with the
data in the same-sign approach, namely, the Sivers function that provides a better description for
SIDIS gives a worse description for DY and vice-versa.

It is also instructive to compare Sivers functions extracted in both fits. We have found that the
parameters extracted in both cases agree within 68%CI’s, except for Nsea-parameter, which flips
the sign. It shows that u, d, and s components are mainly constrained by the SIDIS data, where the
dominant contribution comes from q +�⇤

! q sub-process. In the DY process, the anti-quarks play
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SpinQuest data may prove important to constraint sea-quark 
functions  
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We have extracted Sivers function from the first global fit of 
SIDIS, pion-induced Drell-Yan and W±/Z production 
experimental data at N3LO precision
Conservative data cuts are used to ensure validity of 
factorization and unbiased parametrization

Good agreement between SIDIS and DY data in an 
analysis with TMD evolution is achieved for the first time

The Qiu-Sterman functions are extracted in a model 
independent way

Our results set a new benchmark and the standard of 
precision for studies of TMD polarized functions 
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(a) (b)

Figure 15. The comparison of the Sivers function extractions in the momentum space for u, d, quarks
at x = 0.1 and µ = 2 GeV. Our results, black solid line and the blue band, are compared to JAM20 [30]
(gray dashed line with the error corridor hatched), PV20 [29] (magenta hatched region), EKT20 [31] (violet
hatched region, dashed line) .

Figure 16. Sivers function in the momentum space for u quark at x = 0.1 as a function of kT (GeV).
The bands are the 68%CI. The calculations are performed at four different values of Q.

can see, the evolution modifies the shape and the amplitude of the Sivers function.

4.3 Positivity constraints for the Sivers function

In Ref. [109] the positivity constraints for TMD distributions were derived assuming the positive-
definiteness of the polarization matrix due to its probabilistic interpretation in the parton model.
In particular, the positivity constraint involving the Sivers function is

k2
T

M2

�
g1T (x, kT )2 + f?

1T (x, kT )2
�
6 f1(x, kT )2, (4.5)

where g1T is the worm-gear T or Kotzinian-Mulders [110, 111] function. Generally, such positivity
constraints are not respected in the quantum field theory due to renormalization effects, which are
only enhanced in the TMD case by renormalizing rapidity divergences. Recall in particular that
even cross-sections become negative in the region outside of the TMD factorization validity. In some
cases the violation of positivity constraints is very significant, e.g., for linearly polarized gluon TMD
PDF discussed in Ref. [112]. As far as our analysis includes the TMD evolution, we expect that
the positivity constraint is not applicable, given that it is based on the tree order approximation
argument. Nonetheless, it is instructive to check the constraint from Eq. (4.5).
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In Fig. 17 we plot the function

pos(x, kT , µ) = 1 �
k2
T

M2

✓
f?1T (x, kT ; µ, µ2)

f1(x, kT ; µ, µ2)

◆2

, (4.6)

as the function of x and kT at µ = 2 GeV. One has pos > 0 (pos < 0) for the regions where Eq. (4.5)
is (not) satisfied in the absence of g1T contribution. For the values of the Sivers function we take
the largest boundary of 68%CI. We observe that the positivity constraint is satisfied everywhere
except for the unmeasured large-x region. If we consider the lowest boundary of 68%CI the region
pos > 0 is much larger, in particular, u quark satisfies Eq. (4.5) in the full range of (x, kT ). Also the
picture depends on the scale, and improves (in the sense that the the region pos > 0 becomes wider)
for larger scales. We conclude that our extraction does not contradict the positivity constraint in
the regions reached by the experimental data used in this analysis.

k T
(G

eV
)

x x x x
Figure 17. The function pos(x, kT , µ) defined in Eq. (4.6) at µ = 2 (GeV) for u quark, d quark, ū quark,
s quark. The positivity constraint (4.5) is violated in the yellow-to-blue shaded region.

4.4 3D tomography of the nucleon and the Sivers function

The magnitude of the Sivers function extracted in our fit is generally much smaller than the unpo-
larized TMD PDF. To present the distortion effect on the unpolarized quarks driven by the hadron
polarization, we introduce the momentum space quark density function

⇢1;q h"(x,kT ,ST , µ) = f1;q h(x, kT ; µ, µ2) �
kTx

M
f?1T ;q h(x, kT ; µ, µ2), (4.7)

where kT is a two-dimensional vector (kTx, kTy). This function reflects the TMD density of un-
polarized quark q in the spin-1/2 hadron totally polarized in ŷ-direction, ST = (Sx, Sy), where
Sx = 0, Sy = 1, compare to Eq. (4.2). In Fig. 18 we plot ⇢ at x = 0.1 and µ = 2 GeV. To present
the uncertainty in unpolarized and Sivers function, we randomly select one replica for each point of
a figure. Thus, the color fluctuation roughly reflects the uncertainty band of our extraction. The
presented pictures have a shift of the maximum in kTx, which is the influence of Sivers function that
introduces a dipole modulation of the momentum space quark densities. This shift corresponds to
the correlation of the Orbital Angular Momentum (OAM) of quarks and the nucleon’s spin. One
can see from Fig. 18 that u quark has a negative correlation and d quark has a positive correlation.
Without OAM of quarks, such a correlation and the Sivers function are zero, and thus we can
observe in Fig. 18 the evidence of the presence of OAM of u and d quarks in the wave function of
the nucleon.

Let us also discuss the tomographic scan of the nucleon both in x and kT . We plot in Fig. 19
the momentum space quark density function ⇢1;q h"(x,kT ,ST , µ) from Eq. (4.7) as function of
both x and kTx in order to assess the region in which the Sivers effect has the most influence.
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Figure 3. Examples of histograms of parameter distribution for r1 and Nsea obtained in the joined
fit of SIDIS and DY data. The orange histogram is the distribution due to experimental uncertainties
(500 replicas). The blue histogram is the distribution due to SV19 extraction (300 replicas). The green
dashed line and green band (the black line and blue band) show positions of the mean value and 68%CI for
distribution due to experimental uncertainties (due to SV19 fit).
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Figure 4. An example of evaluation of an observable (here it is the optimal Sivers function for d-quark at
x = 0.1 as a function of b). The observable is computed for all sets of replicas for each point (an example of
the distribution at b = 0.5 (GeV�1) is shown in the left panel). The color notation is the same as in Fig. 3

from the Gaussian shape (especially the ones due to the experimental uncertainties). Typically,
they are skewed and have long, power-like tails. Two examples of replica distributions (we select
parameters r1 and Nsea as examples with the widest distribution due to SV19 uncertainty) and
their parameters determination are shown in Fig. 3. We also observed that the distribution due to
SV19 uncertainty is much narrower (in most cases by order of magnitude) and less skewed compared
to the distribution due to the uncertainty of the experimental data. Therefore, we use the mean
value of the distribution due to SV19 uncertainty as to the central fit value (CF value). CF value
is the value of our best estimate of the true values for the parameters. The uncertainty is given by
68% confidence interval (68%CI) computed with distribution due to the data uncertainty using the
bootstrap method, see Ref. [101, 102]. The results for observables are presented in the form

observable = CF value+�1
��2

, (3.5)

where �1,2 distances to boundaries of 68%CI. For continuous functions such as the Sivers function,
we use the same method for each point; see an example in Fig. 4. The resulting distributions of
replicas are available as a part of artemide distribution [103].
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