SIVERS EXTRACTION WITH NEURAL NETWORK

Ishara Fernando, Nicholas Newton, Devin Seay & Dustin Keller

University of Virginia (UVA) Spin Physics Group

@ **DIS-2021** April 13, 2021

Semi Inclusive Deep Inelastic Scattering (SIDIS) Process

 $\frac{d^5 \sigma^{lp \to lhX}}{dx dQ^2 dz d^2 p_{hT}} \propto \sum_{q} e_q^2 \int d^2 \mathbf{k}_\perp \, \mathcal{K}(x, p_{hT}, Q^2) f_q(x, \mathbf{k}_\perp) D_{h/q}(z, p_\perp) + \mathcal{O}\left(\mathbf{k}_\perp/Q\right)$

Fragmentation Functions

Nucleon Spin Quark Spin

V		Quark Polarization		
<i>x</i>		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
arXiv:hep-ph/0501196	ion d	$f_1 = \bullet$		$h_1^{\perp} = \begin{array}{c} \bullet \\ \bullet \\ Boer-Mulders \end{array}$
$\frac{1}{z}$	Polarizat r		$g_{1L} = \bigoplus_{\text{Helicity}} - \bigoplus_{\text{Helicity}} +$	$h_{1L}^{\perp} = \checkmark - \checkmark$
$f_{q/p\uparrow}(x,\mathbf{k}_{\perp}) = f_{q/p}(x,k_{\perp}) + \frac{1}{2}\Delta^{N}f_{q/p\uparrow}(x,k_{\perp})\mathbf{S}.(\mathbf{\hat{p}}\times\mathbf{k}_{\perp})$	ucleon H	$-f^{\perp} = \begin{pmatrix} \uparrow \\ \bullet \end{pmatrix} - \begin{pmatrix} \bullet \end{pmatrix}$		$h_1 = \underbrace{\uparrow}_{\text{Transversity}} - \underbrace{\uparrow}_{\text{Transversity}}$
$= f_{q/p}(x,k_{\perp}) - \frac{\kappa_{\perp}}{m_p} f_{1T}^{\perp q}(\overline{x,k_{\perp}}) \mathbf{S}.(\mathbf{\hat{p}} \times \mathbf{\hat{k}}_{\perp})$	2	Sivers	9 _{1T}	$h_{1T}^{\perp} = -$

$$\begin{aligned} A_{UT}^{\sin(\phi_h - \phi_S)}(x, y, z, p_{hT}) &= \frac{\left[z^2 \langle k_{\perp}^2 \rangle + \langle p_{\perp}^2 \rangle\right] \langle k_S^2 \rangle^2}{\left[z^2 \langle k_S^2 \rangle + \langle p_{\perp}^2 \rangle\right] \langle k_{\perp}^2 \rangle^2} \exp\left[-\frac{p_{hT}^2 z^2 \left(\langle k_S^2 \rangle - \langle k_{\perp}^2 \rangle\right)}{\left(z^2 \langle k_{\perp}^2 \rangle + \langle p_{\perp}^2 \rangle\right)}\right] \\ &\times \frac{\sqrt{2e} z p_{hT}}{M_1} \frac{\sum_q \mathcal{N}_q e_q^2 f_q(x) D_{h/q}(z)}{\sum_q e_q^2 f_q(x) D_{h/q}(z)} \end{aligned}$$

M. Anselmino et. al. arXiv: 1612.06413(2016)

SIVERS ASYMMETRY FROM SIDIS

 $A_{UT}^{\sin(\phi_h - \phi_S)}(x, y, z, p_{hT}) = \frac{[z^2 \langle k_{\perp}^2 \rangle + \langle p_{\perp}^2 \rangle] \langle k_S^2 \rangle^2}{[z^2 \langle k_S^2 \rangle + \langle p_{\perp}^2 \rangle] \langle k_{\perp}^2 \rangle^2} \exp\left[-\frac{p_{hT}^2 z^2 \left(\langle k_S^2 \rangle - \langle k_{\perp}^2 \rangle\right)}{(z^2 \langle k_{\perp}^2 \rangle + \langle p_{\perp}^2 \rangle)}\right] \times \frac{\sqrt{2e} z p_{hT}}{M_1} \frac{\sum_q \mathcal{N}_q e_q^2 f_q(x) D_{h/q}(z)}{\sum_q e_q^2 f_q(x) D_{h/q}(z)}$

 $\langle k_S^2 \rangle = \frac{M_1^2 \langle k_\perp^2 \rangle}{M_1^2 + \langle k_\perp^2 \rangle} \qquad \langle k_\perp^2 \rangle = 0.57 \pm 0.08 \text{ GeV}^2 \qquad \langle p_\perp^2 \rangle = 0.12 \pm 0.01 \text{ GeV}^2$

 $D_{h/q}(z)$ is the fragmentation function for a quark with flavor q in a hadron h

$$D_{h/q}(z,p_{\perp}) = D_{h/q}(z) \frac{1}{\pi \langle p_{\perp}^2 \rangle} e^{-p_{\perp}^2 / \langle p_{\perp}^2 \rangle}$$

 $\langle p_{\perp}^2
angle$ is the width of the unpolarized TMD-PDFs

$$A_{UT}^{\sin(\phi_h - \phi_S)}(x, y, z, p_{hT}) = \mathcal{A}_0(z, p_{hT}, M_1) \left(\frac{\sum_q \mathcal{N}_q e_q^2 f_q(x) D_{h/q}(z)}{\sum_q e_q^2 f_q(x) D_{h/q}(z)} \right)$$

$$\mathcal{N}_q(x) = N_q x^{\alpha_q} (1-x)^{\beta_q} \frac{(\alpha_q + \beta_q)^{(\alpha_q + \beta_q)}}{\alpha_q^{\alpha_q} \beta_q^{\beta_q}} \qquad \qquad \mathcal{N}_{\bar{q}}(x) = N_{\bar{q}}$$

arXiv:hep-ph/0501196

M. Anselmino et. al.arXiv: 1612.06413(2016)

FITTING METHODOLOGY

Inputs:

- Unpolarized PDFs : LHAPDF6 (CTEQ61)
- Fragmentation Functions:
 - Pi+: NNFF10_Pip_nlo
 - Pi-: NNFF10_Pim_nlo
 - Pi0: NNFF10_Pisum_nlo
 - K+: NNFF10_Kap_nlo
 - K-: NNFF10_Kam_nlo

V. Bertone et. al arXív:1706.07049

Data Sets (on consideration):

- HERMES_p_2009 (from Luciano Pappalardo)
- COMPASS_d_2009 (from Bakur Parsamyan)
- COMPASS_p_2015 (from Bakur Parsamyan)
- HERMES_p_2020 (from Luciano Pappalardo)

 $\times \frac{\sqrt{2e} z p_{hT}}{M_1} \frac{\sum_q \mathcal{N}_q e_q^2 f_q(x) D_{h/q}(z)}{\sum_q e_q^2 f_q(x) D_{h/q}(z)}$

 $A_{UT}^{\sin(\phi_h - \phi_S)}(x, y, z, p_{hT}) = \frac{\left[z^2 \langle k_{\perp}^2 \rangle + \langle p_{\perp}^2 \rangle\right] \langle k_S^2 \rangle^2}{\left[z^2 \langle k_S^2 \rangle + \langle p_{\perp}^2 \rangle\right] \langle k_{\perp}^2 \rangle^2} \exp\left[-\frac{p_{hT}^2 z^2 \left(\langle k_S^2 \rangle - \langle k_{\perp}^2 \rangle\right)}{\left(z^2 \langle k_S^2 \rangle + \langle p_{\perp}^2 \rangle\right) \left(z^2 \langle k_{\perp}^2 \rangle + \langle p_{\perp}^2 \rangle\right)}\right]\right]$

Fit parameters (13):

 $egin{aligned} M_1 \ N_u, lpha_u, eta_u, N_{ar{u}} \ N_d, lpha_d, eta_d, N_{ar{d}} \ N_s, lpha_s, eta_s, eta_s, N_{ar{s}} \end{aligned}$

Fitting routines:

- "iminuit" (python supported version of MINUIT)
- Python scipy.oprimize.curve_fit
- Using a Neural Network approach

FITS TO HERMES(2020) [PRELIMINARY]

Hadron	Dependence	ndata	$\chi^2/ndata$
π^+	x	8	2.12
π^+	z	11	1.49
π^+	p_{hT}	8	1.14
π^{-}	x	8	1.81
π^{-}	z	11	1.16
π^{-}	p_{hT}	8	1.20
π^0	x	8	0.40
π^0	z	11	0.95
π^0	p_{hT}	8	0.50
K^+	x	8	0.48
K^+	z	11	6.31
K^+	p_{hT}	8	1.26
K^{-}	x	8	0.26
K^{-}	z	10	0.93
K^{-}	p_{hT}	8	0.79
Total		134	1.477

NN FITS TO HERMES(2009) [PRELIMINARY]

0.00

-0.05

-0.10

0.05

0.10

0.15 x

Hadron	Dependence	ndata	$\chi^2/ndata$
π^+	x	7	2.29
π^+	z	7	1.01
π^+	p_{hT}	7	3.40
π^-	x	7	3.13
π^{-}	z	7	0.52
π^-	p_{hT}	7	1.96
π^0	x	7	0.90
π^0	z	7	1.13
π^0	p_{hT}	7	1.61
K^+	x	7	1.78
K^+	z	7	3.69
K^+	p_{hT}	7	1.29
K^{-}	x	7	0.52
K^{-}	z	7	0.57
K^{-}	p_{hT}	7	0.73
Total		105	1.64

0.20

0.25

NN PREDICTIONS FOR HERMES(2020) [PRELIMINARY]

Trained using HERMES 2009 data set

Hadron	Dependence	ndata	$\chi^2/ndata$
π^+	x	8	2.23
π^+	z	11	1.63
π^+	p_{hT}	8	2.07
π^-	x	8	2.82
π^-	z	11	0.57
π^-	p_{hT}	8	1.44
π^0	x	8	0.50
π^0	z	11	0.97
π^0	p_{hT}	8	0.73
K^+	x	8	1.45
K^+	z	11	7.99
K^+	p_{hT}	8	2.45
K^{-}	x	8	0.54
K^{-}	z	10	1.11
K^{-}	p_{hT}	8	2.93
Total		134	2.02

SIVERS FUNCTION

 $x \Delta^N f_{q/p\uparrow}(x,k_\perp)$

From regular fit results

$$\begin{split} f_{q/p}(x,k_{\perp}) &= f_q(x) \frac{1}{\pi \langle k_{\perp}^2 \rangle} e^{-k_{\perp}^2/\langle k_{\perp}^2 \rangle}, \\ \Delta^N f_{q/p\uparrow}(x,k_{\perp}) &= 2\mathcal{N}_q(x)h(k_{\perp})f_{q/p}(x,k_{\perp}), \\ \mathcal{N}_q(x) &= N_q x^{\alpha_q} (1-x)^{\beta_q} \frac{(\alpha_q + \beta_q)^{(\alpha_q + \beta_q)}}{\alpha_q^{\alpha_q} \beta_q^{\beta_q}}, \\ h(k_{\perp}) &= \sqrt{2e} \frac{k_{\perp}}{M_1} e^{-k_{\perp}^2/M_1^2} \end{split}$$

SIVERS FUNCTION FROM THE NEURAL NETWORK $x \Delta^N f_{q/p\uparrow}(x, k_{\perp})$

13

DISCUSSION & FUTURE WORK

> Fits to individual data sets can be implemented with the inclusion of s-quarks

- Performing global fits (on-going work)
- > Hyperparameter search to optimize the Neural Network (NN)
- > Exploring different NN architectures to handle different quark flavors
- > Training with more LHAPDF sets
- Investigating towards Sivers Asymmetry extraction from Drell –Yan with/without considering the "sign-flip" of the Sivers Function.

THANK YOU!

