Density of ammonia at the boiling point of nitrogen Oscar A. Rondon - *INPP - Univ. of Virginia*

Requirement:

- minimize the contribution of the density of the target material to the experimental systematic uncertainties, through the dilution factor *f* and the packing fraction.

Solution:

- measure $\rho_{\rm NH3},\,\rho_{\rm ND3}$ at the boiling point of nitrogen (77.35 K) with better than 2% accuracy.

- extrapolate existing $\rho_{\rm NH3}$ data at higher (and lower) temperatures to the polarized target operating point: 1 K.

Technique:

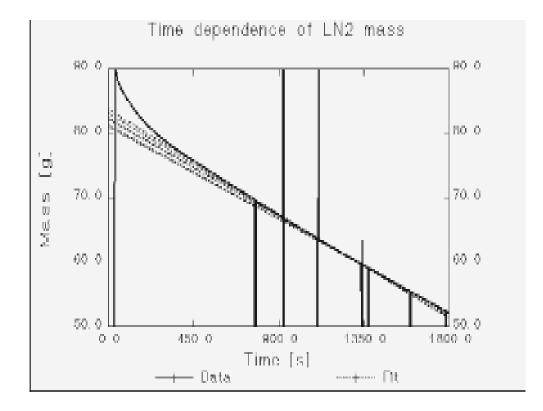
- as reported at the experiment E143 meeting of Jan. 29, 1993, we use an electronic balance, with serial (RS-232) readout, connected to an IBM PC compatible computer. The balance reads the weight of the ammonia samples loaded in a volumetric flask immersed in a dewar full of liquid nitrogen, once per second, as the LN_2 evaporates. LN_2 is added to the flask and the total volume (LN_2 + ammonia) is read several times, while the computer records the weight.

The data are collected by a spreadsheet program (AS-EASY-AS., V5.5) and stored directly in the cells of a worksheet for reduction and analysis

Results Density of nitrogen at the boiling point.

Review of existing data:

Temperature	Density	Reference
77.35 K	805.9 [kg/m ³]	Thermodynamic Properties of Nitrogen,
(extrapolated from data at	70 to 76 K)	N.N. Sychev et al., 1987, p.147-150.
77.25 K	28.881 [mol/1]=	CRC Handbook of Chemistry and
	809.1 [g/l]	Physics, 71st. Ed., 1991, p. 6-17.
-195.8°C (77.35 K)	.8081 [g/cm ³]	Loc. cit., p. 4-84.
Liq. @ boiling pt.	804 [kg/m ³]	Loc. cit., p. 6-97
77.35 K	1.239 [dm ³ /kg]=	Tables of the Thermophysical
	807.1 [kg/m ³]	Properties of Liquids and Gases,
		N. Vargaftik, 1975, p. 433.
-195.84° C	.8084	A.I.P. Handbook of Physics, 2nd. ed.
(77.31 K)		1963, p. 2-155
77.35 K	.81 [g/cm ³]	Smithsonian Physical Tables, 9 ed.,
		rev., 1969, p. 291.


Comments:

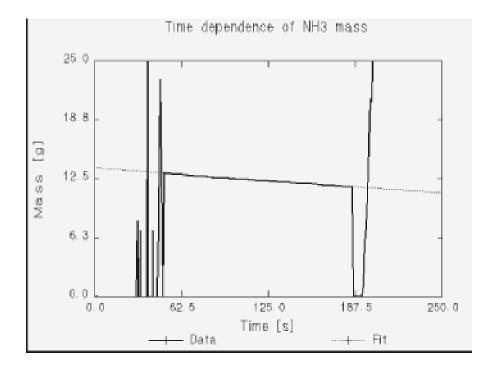
These values have a standard deviation of 0.002 [g/ml]. It is not clear how to combine them. A weighted average with 0.001 [g/ml] uncertainties for all values except the last one (0.01 g/ml) is:

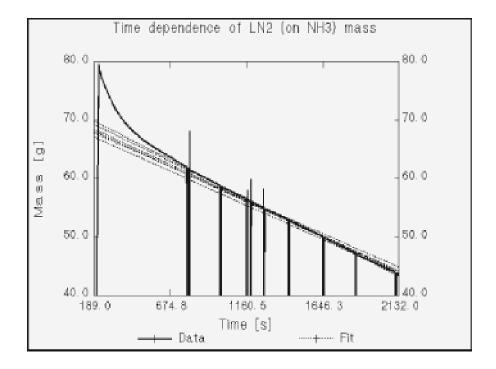
.806 [g/ml] +/- 0.004 [g/ml]

where the error reflects the contributions of different temperatures, techniques and age of the values.

Measurement:

Fitted values:


Reading	LN2 vol	LN2 mass	LN2 rho	$(\delta \rho N/\rho N)$
	ml	g	g/ml	
1	103.3	83.67	0.810	0.11%
2	102.8	83.06	0.808	0.19%
3	102.5	82.12	0.801	0.13%
4	102.2	82.32	0.805	0.12%
5	102.1	80.95	0.793	1.41%
6	102.0	81.28	0.797	0.12%
7	101.9	81.28	0.798	0.16%


<u>Results:</u>

Density	Simple	Weighted	
<ρ>	0.8034	0.8051	g/ml
δρ	0.0024	0.0004	g/ml
δρ/ρ	0.3%	0.05%	

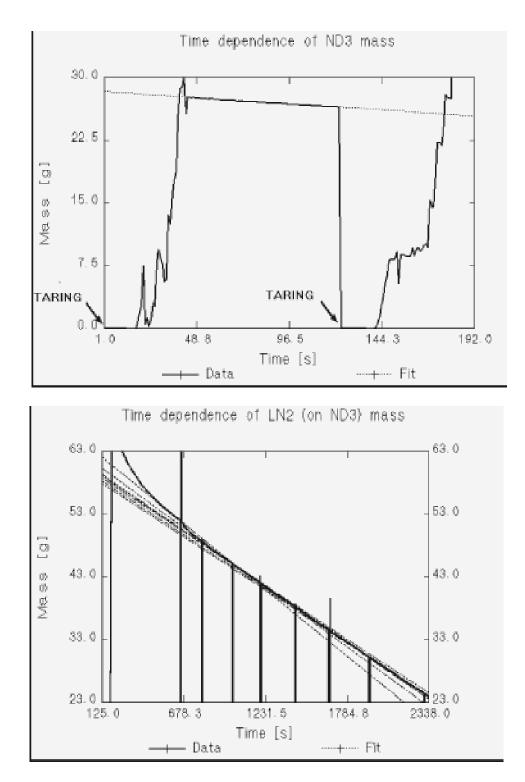
Density of ordinary ammonia

Measurements:

Fitted values:

Reading	Tot Vol	LN2 mass	LN2 Vol	NH3 Vol	NH3 rho	$(\delta \rho_A / \rho_A)$
	ml	g	ml	ml	g/ml	
1	102.1	69.76	86.64	15.46	0.88	2.92%
2	101.7	69.17	85.92	15.78	0.86	2.82%
3	101.2	67.70	84.09	17.11	0.79	3.07%
4	100.9	68.40	84.96	15.94	0.85	2.85%
5	100.6	68.00	84.46	16.14	0.84	2.72%
6	100.4	68.04	84.51	15.89	0.86	2.81%
7	100.2	67.03	83.25	16.95	0.80	2.53%

<u>Results:</u>


NH3 mass	13.595	g	
d_m_NH3	0.012	g	
Density	Simple	Weighted	
<ρ>	0.843	0.840	g/ml
δρ	0.012	0.009	g/ml
δρ/ρ	1.41%	1.06%	

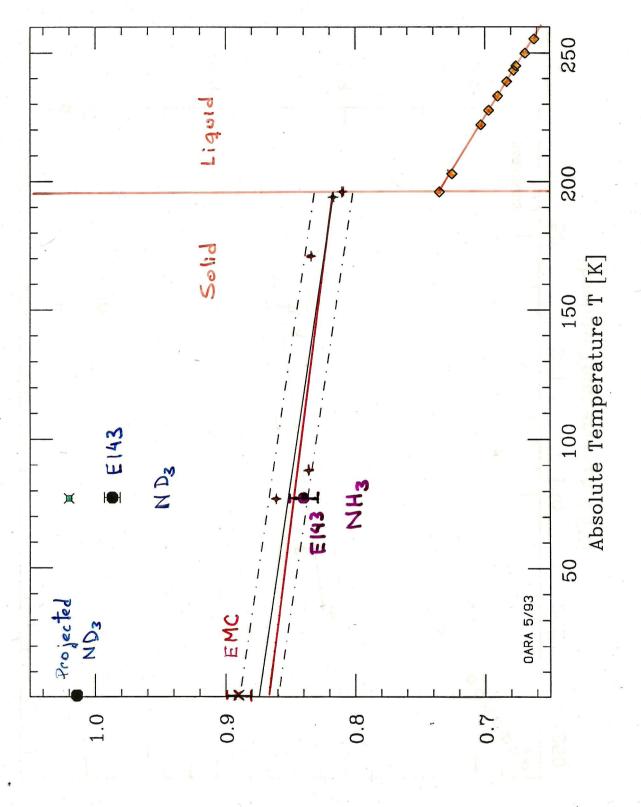
Comments:

Value agrees within errors with line fit to other measurements of solid ammonia density versus temperature, from the freezing point of ammonia to the boiling point of nitrogen.

Density of deuterated ammonia

Measurements:

Fitted values:

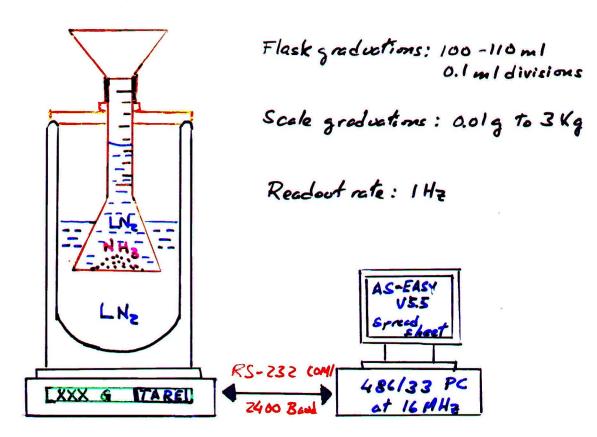

Reading	Tot Vol	LN2 mass	LN2 Vol	ND3 Vol	ND3 rho	(δρ_Α/ρ_Α)
	ml	g	ml	ml	g/ml	
1	103.9	61.99	77.00	26.90	1.05	1.53%
2	103.6	60.82	75.54	28.06	1.01	1.84%
3	103.4	59.82	74.30	29.10	0.97	1.92%
4	103.2	59.42	73.80	29.40	0.96	1.65%
5	103.0	59.77	74.24	28.76	0.98	1.74%
6	102.8	60.05	74.59	28.21	1.00	1.83%
7	102.7	58.96	73.23	29.47	0.96	1.65%
8	102.5	58.56	72.74	29.76	0.95	1.67%

Results:

ND3 mass	28.26	g	
d_m_ND3	0.02	g	
Density	Simple	Weighted	
<ρ>	0.988	0.987	g/ml
δρ	0.012	0.006	g/ml
δρ/ρ	1.19%	0.61%	

Comments:

The ratio of the densities $(\rho_{\text{NH3}}/\rho_{\text{ND3}}) = 0.8511$ is equal (within the uncertainties of the measurements) to the ratio of the molecular weights $(M_{\text{NH3}}/M_{\text{ND3}}) = 0.8493$. This is expected to be the case since both material have the same crystalline structure. The same ratio is seen for the two measurements of the lattice constant: 0.861/1.02 = 0.8441. This is also the case of $H_2O/D_2O = 0.9047$ for the density and 0.8995 for the weights. This would imply that both substances should have the same $\rho(t)$ dependence.


Density of ammonia (NH $_3$,ND $_3$) ρ [g/cm 3]

the heather of and

Technique for measuring P(T=LN2) and finding P(T=1K)

1. Determine weight of NH3 material by loading into volumetric flack 2. Add LNZ to find volume of NH3: $V_{NH3} = V_{Total} - M_{LN2}/f_{LN2}$ 3. Compute $P_{NH3} = \frac{M_{NH3}}{V_T - M_{LN2}/f_{LN3}} = \frac{M_4}{V_T - M_N/f_N}$

Use on electronic serial output (RS-232) scale to determine losses of LNz by evaporation during weighing

