
Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505

www.elsevier.com/locate/cma
Mapping polynomial fitting into feedforward neural
networks for modeling nonlinear dynamic systems and beyond

Jin-Song Pei a,*, Joseph P. Wright b, Andrew W. Smyth c

a School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73019-1024, United States
b Division of Applied Science, Weidlinger Associates Inc., New York, NY 10014-3656, United States

c School of Engineering and Applied Science, Columbia University, New York, NY 10027-6699, United States

Received 13 January 2004
Abstract

This study presents an explicit demonstration on constructing a multilayer feedforward neural network to approx-

imate polynomials and conduct polynomial fitting. Built on an algebraic analysis of sigmoidal activation functions

rather than incremental training, this work reveals the capability of the ‘‘universal approximator’’ by relating the ‘‘soft

computing tool’’ to an important class of conventional computing tools widely used in modeling nonlinear dynamic

systems and many other scientific computing applications. The authors strive to enable physical interpretations and

afford full control when applying the highly adaptive, powerful yet subjective neural network approach. This work

is a part of the effort of bridging the gap between the black-box and mechanics-based parametric modeling.

� 2005 Elsevier B.V. All rights reserved.

Keywords: Feedforward neural networks; Polynomial fitting; Nonlinear dynamic systems
1. Introduction

1.1. Motivation

Polynomial functions are widely used in analytical models and fitting experimental results. There is no

exception in applied mechanics, where polynomials are widely adopted as basis functions in modeling non-
linearities (e.g., [25]). The authors aim to bridge the gap between the model-based interpretive and neural

network-based black-box models for nonlinear dynamic systems. Thus exploring how exactly to map
0045-7825/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.cma.2004.12.010

* Corresponding author.

4482 J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505
polynomials and polynomial fitting into neural networks has important significance and is the focus of this

paper.

Presented here is a part of an ongoing study of introducing meaning into neural network inner working

in approximating nonlinear functions. Such an interest is prompted by the need in the health monitoring

of civil and mechanical systems (e.g., [2,1]) where variations in system identification results are often used
to infer possible damages (e.g., [23]). The authors have demonstrated some preliminary results in [19–21]. If

designed properly, a single-degree-of-freedom (SDOF) memoryless system can be simulated and identified

more efficiently using a multilayer feedforward neural network (see Section 1.2) than using the polynomial

based conventional methods [14,18]. For example, it has been shown that a neural network with very few

hidden nodes can be used to approximate softening, Coulomb and clearance nonlinearities, the superior

performance of which originates from the sigmoidal basis functions (see Section 1.2) and can hardly be

matched by the fixed polynomial basis. More importantly, the authors have demonstrated that weights

and biases of the neural network can be related to physically, mathematically or geometrically interpret-
able meaning through an engineered neural network initialization process. This approach can be applied

in a future study to a chain-like multi-degree-of-freedom (MDOF) system based on the methodology in

[13]. For a coupled MDOF system with memory, it was demonstrated in a separate study [22] how neural

network based system identification could be made transparent while remaining adaptive. Nonlinear restor-

ing forces approximated using the proposed method include both polynomial and nonpolynomial types

such as Duffing, hardening, Van der Pol, softening, saturation, Coulomb, and clearance [19–21]. The strat-

egy of mapping polynomials into neural networks, for all these cases, serves as a cornerstone for future

work.
1.2. Capabilities of multilayer feedforward neural networks

Function approximation is the core of many engineering research areas such as identification, modeling

and simulation. The task of function approximation is to construct a function that reproduces a given

input–output relationship. The use of artificial neural networks for function approximation entails the con-

struction of a neural network that approximates the desired functional mapping from numerical input vec-

tors to numerical output vectors. Since each component of the output vector can be approximated
separately, the problem becomes approximation of an output scalar using an input vector. Based on such

an input(vector)–output(scalar) relation, this study explores how to execute ‘‘polynomial fitting’’ (i.e., the

functional approximation with a polynomial series function using some best fit criterion) using a neural net-

work whose architecture design is entirely guided by the nature of the function approximation task rather

than some ambiguous empirical guess.

Multilayer feedforward neural networks with sigmoidal activation functions are powerful for function

approximation. In fact, Cybenko [5] and Hornik et al. [8] proved that a finite linear sum of continuous sig-

moidal functions can approximate any function to any desired degree of accuracy. Consequently, a feed-
forward neural network with one hidden layer and an arbitrary number (nh) of hidden nodes is often

called a universal approximator. Fig. 1 shows a neural network architecture consistent with the theorem,

which says that for a given continuous scalar goal function g(p) of vector p, there is a scalar output function

z(p) in a linear summation form:
zðpÞ ¼
Xnh
j¼1

w2;jSðw1;jp� bjÞ ð1Þ
such that jz(p) � g(p)j < e for all p, where e is an arbitrarily small number. Note that S may be any contin-

uous sigmoidal function with the property

Σ

Σ

Σ

Σ

Layer 1 Layer 2

Input
layer

Output
layer

Hidden
layer

Σ summation

activation function

Legend

b
1 w2,1

w2,2

b2

p
1

p
2

p
n

w2,n
h

bn
h

w
1,1

w
1,2

w
1,n

h

component of weighting vector

z(p)

p

Fig. 1. Neural network architecture with one hidden layer, which is a universal approximator.

J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505 4483
SðvariableÞ !
1 variable ! þ1;

0 variable ! �1.

�
ð2Þ
The logistic sigmoidal function, used in this study because of its popularity, is defined by
SðxÞ ¼ 1

1þ e�x
; ð3Þ
where x = w1,jp � bj and j = 1, . . . , nh as in Eq. (1) and Fig. 1.

As long as the number of hidden nodes nh can be decided upon, all the weights and biases, w1,j, w2,j and

bj, can be trained using a training data set, i.e., p and g(p) pairs, starting with a set of initial values. However

since the theorem proves existence and therefore is not ‘‘constructive’’, it does not indicate what the value of
nh should be, thus imposing a significant practical challenge. Moreover, training is often based on random

initialization procedures that produce nonunique trained weights and biases, leading to difficulty when try-

ing to interpret these quantities in physically meaningful terms. This neural network initial design problem,

together with the initialization of the weights and biases, nonuniqueness and resultant interpretation are

listed as the least researched issues in neural network applications [19,20]. It is exactly these understudied

practical issues that have made neural networks seem like ‘‘black boxes’’ to many researchers and practicing

engineers.

Contributions to illustrate the ‘‘meaning’’ of neural networks can be found in [24,12], however, they are
not in the area of function approximation but pattern classification using multilayer perceptrons. Construc-

tive approaches to function approximation are proposed in [11,10], however both of these are difficult to

implement in realistic applications. As outlined in Section 1.1, the authors have attempted to give physical

or mathematical meaning to neural network parameters, thereby overcoming initial design problems and

avoiding nonuniqueness [19,22,20,21]. Such an effort will lead to adaptive, efficient yet transparent

black-box techniques in the identification of nonlinear dynamic systems.

4484 J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505
1.3. Mapping polynomials into neural networks for engineering applications

To relate the neural network based function approximation to conventional approaches, it is important

to understand precisely how a multilayer feedforward neural network with one-hidden layer can be con-

structed to approximate a known function. Mhaskar [17] has studied optimal approximation of smooth
and analytic functions using multilayer feedforward neural networks. This work, however, with an empha-

sis on the feasibility of neural networks and mathematical rigor is notationally dense and may not be readily

accessible to those outside the neural network mathematics research community. Meade et al. [16,15] pre-

sented a method on how to map polynomials into a neural network architecture in a study of mechanical

systems using the Duffing oscillator, where both multilayer feedforward and recurrent neural networks are

considered.

Using the force-state mapping problem in engineering mechanics [14,18,3,4,25], which was originally

based on either Chebyshev or ordinary polynomials, the authors pursued questions of how many hidden
nodes and what the initial values of weights and biases should be in approximating typical nonlinear func-

tions of two variables, especially displacement and velocity of single-degree-of-freedom (SDOF) memoryless

nonlinear systems [19,22,20,21]. As a starting point of that study, mimicking polynomials and conducting

polynomial fitting were studied and certain results will be presented in this paper. Unlike the previous work

in [16,15], here the authors� approach goes beyond polynomial type nonlinearities [19,22,20,21]. To map

polynomial fitting into neural networks, the work presented here relies on fixed-weight training procedures

(discussed in Sections 4 and 5), which are simpler to apply than Tikhonov regularization [16].
1.4. Objectives

This paper will demonstrate constructively how a multilayer feedforward neural network can be built to

approximate polynomials (both single variable terms and cross terms) and how a neural network can be

designed to perform function approximation in the same way as conventional polynomial fitting.

Given the motivation stated above, this work serves the following purposes:

• This work showcases that neural networks need not be treated as ‘‘black boxes’’. Approximating poly-
nomials and conducting polynomial fitting are merely examples that clarify how a ‘‘soft computing tool’’

(i.e., neural networks) can be made equivalent to a conventional computing tool.

• In the process of demystifying neural networks, an engineering context of nonlinear dynamics is pro-

vided with detailed derivations based on Taylor series expansion. Rigorous analysis based on function

analysis is available in the literature, but the focus of this study is to give explicit demonstrations of how

neural networks can be operated in an engineering context.

• This work lays a foundation for an approach where the inner workings of neural networks and interpre-

tation of their parameters can be pursued [19–21].
2. Approximating polynomials: one-variable case

The neural network architecture shown in Fig. 1 is the center in this study because [5,8] indicates that

such a neural network is a universal approximator as long as the value of nh (number of hidden nodes)
is not restricted. To approximate a scalar function g(p) of a single variable p, one has the following:
gðpÞ � zðpÞ ¼ w2;1h1ðpÞ þ w2;2h2ðpÞ þ � � � þ w2;nhhnhðpÞ;

hjðpÞ ¼
1

1þ e�ðw1;jp�bjÞ
; j ¼ 1; . . . ; nh;

ð4Þ

J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505 4485
and the weights and biases can be denoted as
Table

Deriva

Deriva

h0 ¼
1

h00 ¼ ð1

h000 ¼ w

h0000 ¼ w
w1 ¼ ½w1;1;w1;2; . . . ;w1;nh �
T
; b ¼ ½b1; b2; . . . ; bnh �

T
; w2 ¼ ½w2;1;w2;2; . . . ;w2;nh �.
When g(p) is a polynomial term of p, it will be shown that all weights and biases as well as the value of nh
can be determined by derivations. The cases of zeroth, first, second and third power approximation will be

considered, respectively, in the following subsections.

The generic format of the basis functions inside Eq. (4) is
hðpÞ ¼ 1

1þ e�ðwp�bÞ ; ð5Þ
where w is the weight (inside the vector w1) and b bias (inside the vector b) to be derived. ‘‘Coefficients’’

inside the vector w2 are also to be derived. The Taylor series with remainder of the basis function in Eq.

(5) at the origin p = 0 to the first, second, third and fourth power, respectively, are listed as follows:
h ¼ hðpÞ ¼ h0 þ h0np;

h ¼ hðpÞ ¼ h0 þ h00p þ
1

2!
h00np

2;

h ¼ hðpÞ ¼ h0 þ h00p þ
1

2!
h000p

2 þ 1

3!
h000n p

3;

h ¼ hðpÞ ¼ h0 þ h00p þ
1

2!
h000p

2 þ 1

3!
h0000 p

3 þ 1

4!
hð4Þn p4;
where the uncertain number n 2 [0, p] for p > 0, and all the derivatives as well as their shorthand notations

are listed in Table 1. Also, in the following derivation, the notation used is
h½i�j ¼ 1

1þ e
�ðw½i�

1;j
p�b½i�j Þ

; ð6Þ
where the superscript [i] denotes the ith power of polynomial term being approximated (i = 0, 1, 2, 3 will be

considered later), while the subscript j stands for the jth node (j = 1, . . . , nh as before). Other subscripts fol-

low the notation defined in Eq. (1) and Fig. 1 should be referred to.
1

tives of sigmoidal function

tive at the origin Derivative at the uncertain number n Shorthand notation

1

þ eb
Q0ðqÞ ¼

1

1þ eq

web

þ ebÞ2
h0n ¼

we�ðwn�bÞ

½1þ e�ðwn�bÞ�2
Q1ðqÞ ¼

eq

ð1þ eqÞ2

2eb½�1þ eb�
½1þ ebÞ2

h00n ¼ w2e�ðwn�bÞ½�1þ e�ðwn�bÞ�
½1þ e�ðwn�bÞ�3

Q2ðqÞ ¼
eq½�1þ eq�
½1þ eq�3

3eb½1� 4eb þ e2b�
½1þ eb�4

h000n ¼ w3e�ðwn�bÞ½1� 4e�ðwn�bÞ þ e�2ðwn�bÞ�
½1þ e�ðwn�bÞ�4

Q3ðqÞ ¼
eq½1� 4eq þ e2q�

½1þ eq�4

hð4Þn ¼ w4e�ðwn�bÞ½�1þ 11e�ðwn�bÞ � 11e�2ðwn�bÞ þ e�3ðwn�bÞ�
½1þ e�ðwn�bÞ�5

Q4ðqÞ ¼
eq½�1þ 11eq � 11e2q þ e3q�

½1þ eq�5

4486 J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505
Before proceeding to detailed derivations, an important issue must be considered. The question is

whether the input (or even the output) of the network should be normalized with respect to its maximum

value before being passed through the network. The idea of normalization of input variables can be found

in [11,10,3]. This data pre-processing procedure is supposed to reduce numerical problems such as ill-con-

ditioning [3]. Also, the range of input values is not considered critical [11]. Lapedes and Farber [11] also
suggested to scale the output to [0, 1] in addition to the inputs and then to re-scale the trained weights back

to fit the original problem. The output may or may not need scaling, but to simplify error analysis involving

a Taylor series expansion, it is useful to scale inputs to [�1, 1]. The following procedure will be used here

when normalization is involved. New input data will be scaled according to the manner in which the train-

ing input data were scaled, and the weights obtained from training the scaled input–output pairs will be

used to predict new output. Finally the predicted output data will be scaled back in the same manner in

which the training output data were scaled. Note that the following derivations are carried out for the cases

where the input is not normalized, while the discussion on error bounds is mainly for the normalized input
case.

2.1. Forming constant term, z � p0 = 1, using a one-hidden layer feedforward neural network

Two sigmoidal functions are chosen, h½0�1 and h½0�2 , where w½0�
1;1 ¼ �w½0�

1;2 and b½0�1 ¼ b½0�2 ¼ 0. Then one has the

following:
z ¼ h½0�1 þ h½0�2 ¼ 1

1þ e
�w½0�

1;1
p
þ 1

1þ e
w½0�
1;1

p
¼ e

w½0�
1;1

p

1þ e
�w½0�

1;1
p

� �
e
w½0�
1;1

p
þ 1

1þ e
w½0�
1;1

p
¼ 1. ð7Þ
This equation holds true for any value of w½0�
1;1. So with zero error, one may let z mimic the zeroth power of

input p where scalar w½0�
1;1 can be any number. Converting the above algebraic sum into a one-hidden layer

neural network, nh = 2 and the weights and biases can be obtained as shown in [19] for a general case. A set

of numerical values is presented in Table 2 while the estimation error is zero. This table is used throughout

this derivation work for many cases.

2.2. Forming first power, z � p1, using a one-hidden layer feedforward neural network

Again, two sigmoidal functions are chosen, h½1�1 and h½1�2 , where w½1�
1;1 ¼ �w½1�

1;2 and b½1�1 ¼ b½1�2 ¼ 0. The Tay-
lor series expansion of both functions at the origin p = 0 to the second power can be written as
h½1�1 ¼ 1

2
þ
w½1�

1;1

4
p þ 1

2!
w½1�

1;1

� �2

Q2 �w½1�
1;1n

½1�
1

� �
p2;

h½1�2 ¼ 1

2
�
w½1�

1;1

4
p þ 1

2!
w½1�

1;1

� �2

Q2 þw½1�
1;1n

½1�
2

� �
p2;
where the shorthand notation Q2 is defined in Table 1.

The constant term can be eliminated by taking the difference of the above two functions. For a nonzero

w½1�
1;1, one then has
z ¼ 2

w½1�
1;1

h½1�1 � h½1�2

� �
¼ p þ w½1�

1;1 Q2 �w½1�
1;1n

½1�
1

� �
� Q2 þw½1�

1;1n
½1�
2

� �n o
p2. ð8Þ
One may choose z to mimic the first power of input p. Converting this algebraic sum into a one-hidden layer

neural network, nh = 2 and the weights and biases can be obtained as shown in [19] for a general case where

Table 2

Derived weights and biases in approximating polynomials from the zeroth to third power—specific results satisfying the error bounds

in Section 2 for normalized inputs

Term Weights in Layer 1 Biases in Layer 1 Weights in Layer 2

p0 w
½0�
1 ¼

w½0�
1;1

�w½0�
1;1

" #
b½0� ¼ 0

0

� �
w
½0�
2 ¼ 1 1½ �

p1 w
½1�
1 ¼ 0.1

�0.1

� �
b½1� ¼ 0

0

� �
w
½1�
2 ¼ þ20 �20½ �

p2 w
½2�
1 ¼

0.1

�0.1

1
�1

2
664

3
775 b½2� ¼

10

10

0
0

2
664

3
775 w

½2�
2 ¼

þ2.2030466� 106

þ2.2030466� 106

�2.0002724� 102

�2.0002724� 102

2
664

3
775
T

p3 w
½3�
1 ¼

0.01

0.01

1
�1

0.001

�0.001

2
6666664

3
7777775

b½3� ¼

10

�10

0
0

0

0

2
6666664

3
7777775

w
½3�
2 ¼

þ6.6103402� 1010

þ6.6103402� 1010

�6.6103402� 1010

�6.6103402� 1010

�1.2003269� 1008

þ1.2003269� 1008

2
6666664

3
7777775

T

p1p2 W
½1;1�
1 ¼

þ0.1 þ0.1

�0.1 �0.1

þ1 þ1
�1 �1

þ0.1 �0.1

�0.1 þ0.1
þ1 �1

�1 þ1

2
66666666664

3
77777777775

b½1;1� ¼

10

10

0
0

10

10
0

0

2
66666666664

3
77777777775

w
½1;1�
2 ¼

5.5076165� 105

5.5076165� 105

�50.006810

�50.006810

�5.5076165� 105

�5.5076165� 105

50.006810

50.006810

2
66666666664

3
77777777775

T

p21p2 W
½2;1�
1 ¼

þ0.01 þ0.01

þ0.01 þ0.01

þ1 þ1
�1 �1

þ0.001 þ0.001

�0.001 �0.001

þ0.01 �0.01
þ0.01 �0.01

þ1 �1

�1 þ1
þ0.001 �0.001

�0.001 þ0.001

0 þ0.01
0 þ0.01

0 þ1

0 �1

0 þ0.001
0 �0.001

2
6666666666666666666666666666664

3
7777777777777777777777777777775

b½2;1� ¼

þ10

�10

0
0

0

0

þ10
�10

0

0
0

0

þ10
�10

0

0

0
0

2
6666666666666666666666666666664

3
7777777777777777777777777777775

w
½2;1�
2 ¼

þ1.1017234� 1010

þ1.1017234� 1010

�1.1017234� 1010

�1.1017234� 1010

�2.0005449� 1008

þ2.0005449� 1008

�1.1017234� 1010

�1.1017234� 1010

þ1.1017234� 1010

þ1.1017234� 1010

þ2.0005449� 1008

�2.0005449� 1008

�2.2034467� 1010

�2.2034467� 1010

þ2.2034467� 1010

þ2.2034467� 1010

þ4.0010898� 1008

�4.0010898� 1008

2
6666666666666666666666666666664

3
7777777777777777777777777777775

T

J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505 4487
the scalar w½1�
1;1 can be determined based on the required accuracy. As shown in [19], the estimation error E1

is bounded by U 1ðw½1�
1;1pÞw

½1�
1;1p

2 assuming w½1�
1;1 > 0, which means U1 is a function of w½1�

1;1p. It can be seen that

the error bound is determined by values of w½1�
1;1 and p. In other words, for a given error bound, the value of

w½1�
1;1 can be calculated. For the case in Table 2, the upper bound of the error is 0.25% [19]. Note that this

4488 J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505
approximation scheme for the first power of input p differs from what is in [16,15], where the partial deriv-

atives of the sigmoidal function with respect to the weights (rather than the inputs) are utilized. These par-

tial derivatives are then evaluated at the weights of zero values, and then the derivatives are approximated

using a finite difference scheme.
2.3. Forming second power, z � p2, using a one-hidden layer feedforward neural network

Two sigmoidal functions are chosen first, h½2�1 and h½2�2 , where w½2�
1;1 ¼ �w½2�

1;2 and b½2�1 ¼ b½2�2 6¼ 0. The Taylor

series expansion of both functions at the origin p = 0 to the third power can be written as
h½2�1 ¼ 1

1þ eb
½2�
1

þ
w½2�

1;1e
b½2�
1

1þ eb
½2�
1

� �2
p þ 1

2!

w½2�
1;1

� �2

eb
½2�
1 �1þ eb

½2�
1

h i
1þ eb

½2�
1

h i3 p2 þ 1

3!
w½2�

1;1

� �3

Q3 �w½2�
1;1n

½2�
1 þ b½2�1

� �
p3;

h½2�2 ¼ 1

1þ eb
½2�
1

�
w½2�

1;1e
b½2�
1

1þ eb
½2�
1

� �2
p þ 1

2!

w½2�
1;1

� �2

eb
½2�
1 ½�1þ eb

½2�
1 �

1þ eb
½2�
1

h i3 p2 � 1

3!
�w½2�

1;1

� �3

Q3 þw½2�
1;1n

½2�
2 þ b½2�1

� �
p3;
where Q3 are defined as before.

The first power term can be eliminated by taking the sum of the above two functions:
h½2�1 þ h½2�2 ¼ 2

1þ eb
½2�
1

þ
w½2�

1;1

� �2

eb
½2�
1 �1þ eb

½2�
1

h i
1þ eb

½2�
1

h i3 p2

þ 1

3!
w½2�

1;1

� �3

Q3 �w½2�
1;1n

½2�
1 þ b½2�1

� �
þ Q3 þw½2�

1;1n
½2�
2 þ b½2�1

� �n o
p3. ð9Þ
Two extra sigmoidal functions are chosen, h½2�3 , h½2�4 , where w½2�
1;3 ¼ �w½2�

1;4 and b½2�3 ¼ b½2�4 ¼ 0. Based on the

result of approximating term p0, 2

1þe
b
½2�
1

ðh½2�3 þ h½2�4 Þ ¼ 2

1þe
b
½2�
1

. Then the constant term in Eq. (9) can be elimi-

nated. For a nonzero w½2�
1;1 and b½2�1 , one has the following:
z ¼
1þ eb

½2�
1

h i3
w½2�

1;1

� �2

eb
½2�
1 �1þ eb

½2�
1

h i h½2�1 þ h½2�2 � 2

1þ eb
½2�
1

h½2�3 þ h½2�4

� �" #

¼ p2 þ 1

3!
w½2�

1;1

1

Q2 b½2�1

� � Q3 �w½2�
1;1n

½2�
1 þ b½2�1

� �
þ Q3 þw½2�

1;1n
½2�
2 þ b½2�1

� �n o
p3. ð10Þ
One may choose z to mimic the second power of input p. Converting this algebraic sum into a one-hid-

den layer neural network, nh = 4 and the weights and biases can be obtained as shown in [19] for a general
case where the scalar w½2�

1;3 is an arbitrary number, scalars w½2�
1;1 and b½2�1 can be determined based on the re-

quired accuracy. As shown in [19], the estimation error E2 is bounded by U 2ðw½2�
1;1p; b

½2�
1 Þw½2�

1;1p
3, which means

U2 is a function of w½2�
1;1p and b½2�1 . It can be seen that the error bound is determined by values of w½2�

1;1, b
½2�
1 and

p. In other words, for a given error bound, the value of w½2�
1;1 and b½2�1 can be calculated. For the case in Table

2, the upper bound of the error is 3.35% [19].

J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505 4489
2.4. Forming third power, z � p3, using a one-hidden layer feedforward neural network

Two sigmoidal functions are chosen, h½3�1 and h½3�2 , where w½3�
1;1 ¼ þw½3�

1;2 and b½3�1 ¼ �b½3�2 6¼ 0. The Taylor ser-

ies expansion of both functions at the origin p = 0 to the fourth power can be written as
h½3�1 ¼ 1

1þ eb
½3�
1

þ
w½3�

1;1e
b½3�
1

1þ eb
½3�
1

� �2
p þ 1

2!

w½3�
1;1

� �2

eb
½3�
1 �1þ eb

½3�
1

h i
1þ eb

½3�
1

h i3 p2 þ 1

3!

w½3�
1;1

� �3

eb
½3�
1 1� 4eb

½3�
1 þ e2b

½3�
1

h i
1þ eb

½3�
1

h i4 p3

þ 1

4!
w½3�

1;1

� �4

Q4 �w½3�
1;1n

½3�
1 þ b½3�1

� �
p4;

h½3�2 ¼ 1

1þ e�b½3�
1

þ
w½3�

1;1e
�b½3�

1

1þ e�b½3�
1

� �2
p þ 1

2!

w½3�
1;1

� �2

e�b½3�
1 �1þ e�b½3�

1

h i
1þ e�b½3�

1

h i3 p2

þ 1

3!

w½3�
1;1

� �3

e�b½3�
1 1� 4e�b½3�

1 þ e�2b½3�
1

h i
1þ e�b½3�

1

h i4 p3 þ 1

4!
w½3�

1;1

� �4

Q4 �w½3�
1;1n

½3�
2 � b½3�1

� �
p4.
The second power term can be eliminated by taking the sum of the above two functions:
h½3�1 þ h½3�2 ¼ 1þ
2w½3�

1;1e
b½3�
1

1þ eb
½3�
1

� �2
p þ 1

3

w½3�
1;1

� �3

eb
½3�
1 1� 4eb

½3�
1 þ e2b

½3�
1

h i
1þ eb

½3�
1

h i4 p3

þ 1

4!
w½3�

1;1

� �4

Q4 �w½3�
1;1n

½3�
1 þ b½3�1

� �
þ Q4 �w½3�

1;1n
½3�
2 � b½3�1

� �n o
p4. ð11Þ
Another two sigmoidal functions are chosen, h½3�3 and h½3�4 , where w½3�
1;3 ¼ �w½3�

1;4 and b½3�3 ¼ b½3�4 ¼ 0. Based on

the result of approximating term p0, h½3�3 þ h½3�4 ¼ 1.

Two extra sigmoidal functions are chosen, h½3�5 and h½3�6 , where w½3�
1;5 ¼ �w½3�

1;6 and b½3�5 ¼ b½3�6 ¼ 0. As derived

in Eq. (8) when approximating term p1, the difference of the two terms can be used to approximate p1.

Thus, the constant and first power terms can be eliminated from Eq. (11). For a nonzero w½3�
1;1 and b½3�1 , the

following can be obtained:
z ¼
3 1þ eb

½3�
1

h i½4�
w½3�

1;1

� �3

eb
½3�
1 1� 4eb

½3�
1 þ e2b

½3�
1

h i h½3�1 þ h½3�2 � h½3�3 þ h½3�4

� �
�

4w½3�
1;1e

b½3�
1

w½3�
1;5 1þ eb

½3�
1

� �2
h½3�5 � h½3�6

� �2
64

3
75

¼ p3 þ
3 1þ eb

½3�
1

h i4
w½3�

1;1

� �3

eb
½3�
1 1� 4eb

½3�
1 þ e2b

½3�
1

h i 1

4!
w½3�

1;1

� �4

Q4 �w½3�
1;1n

½3�
1 þ b½3�1

� �
þ Q4 �w½3�

1;1n
½3�
2 � b½3�1

� �n o
p4

(

�
2w½3�

1;5w
½3�
1;1e

b½3�
1

ð1þ eb
½3�
1 Þ2

Q2 �w½3�
1;5n

½3�
5

� �
� Q2 þw½3�

1;5n
½3�
6

� �n o
p2
)
. ð12Þ
One may choose z to mimic the third power of input p. Converting this algebraic sum into a one-hidden

layer neural network, nh = 6 and the weights and biases are obtained as shown in [19] for a general case
where scalar w½3�

1;3 is an arbitrary number, scalars w½3�
1;1, w

½3�
1;5 and b½3�1 can be determined based on the required

Σ
Σ

Σ

0

p z≈p
3

-

-

Σ

Σ

0

w
2,4
[3]

[3]

w
2,3
[3]

w
2,6
[3]w

1,5
[3]

w
1,1
[3]

w
1,1
[3]

w
1,3
[3]

w
1,3
[3]

w
1,5
[3]

b
1
[3]

b
1
[3]

0

w2,5

w
2,1
[3]Σ

Σ

w
2,2
[3]

-

-

0

w
1
[3]

w
2
[3]

component of weighting vector

Legend

Σ
Σ

Σ

0

p z≈p
2

-

-

Σ

Σ

0

w
2,2
[2]

w
2,3
[2]

w
2,4
[2]

w
1,3

b
1
[2]

w
2,1
[2]

w
1,1
[2]

w
1,3
[2]

[2]

b
1
[2]

w
1,1
[2]

w
1
[2]

w
2
[2]

component of weighting vector

Legend

Σ
Σ

Σw
1,1
[0]

0

0

1

1

p z ≈p
0

w
1,1
[0]-

w
1
[0]

w
2
[0]

component of weighting vector

Legend

Σ
Σ

Σ

0

0p z≈ p
1

-

w
1,1
[1] 2/w

1,1
[1]

w
1,1

2/w
1,1
[1]-

w
1
[1]

w
2
[1]

component of weighting vector

Legend

Fig. 2. Neural network architectures used in approximating zeroth (p0), first (p1), second (p2), third (p3) and powers of polynomial

terms, p 2 [�1, 1].

4490 J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505
accuracy. As shown in [19], the estimation error E3 is bounded by U 3ðw½3�
1;1;w

½3�
1;5; b

½3�
1 ; pÞ, which means U3 is a

function of w½3�
1;1, w

½3�
1;5 and b½3�1 and p. It can be seen that the error bound is determined by values of w½3�

1;1, w
½3�
1;5,

b½3�1 and p. In other words, for a given error bound, the value of w½3�
1;1, w

½3�
1;5 and b½3�1 can be calculated. For the

case in Table 2, the upper bound of the error is 1.75% [19]. The neural network architectures and the

corresponding approximation performances are summarized in Figs. 2 and 3, respectively.
For integer powers with an order higher than 3, a similar philosophy may be applied to form the neural

network architecture. Since quadratic and cubic powers cover the most commonly seen hardening-type

nonlinearities (e.g., Van der Pol and Duffing oscillators), higher powers will not be pursued here. The quan-

titative analysis presented above has revealed the efficiency of sigmoidal functions in approximating poly-

nomials for one-variable case. The derivations for the two-variable case as well as the philosophy for other

multi-variable cases will be presented in Section 3.
3. Approximating polynomials: two-variable case

There is a practical need to fit polynomials of multi-variables. For example for force-state mapping, it is

necessary to study how neural networks can approximate polynomials of two variables. As an extension of

the work in Section 2, a neural network with one hidden layer will be under study, where the output of the

network equals the product of two normalized inputs to the network with a specified accuracy. Power terms

of one of the inputs only are easily obtained as demonstrated from the results in Section 2 because the latter

can be adopted directly. The product of two inputs and the product of the first power of one input and
second power of another input will be considered in this section.

-1 0 1
0.9

1

1.1
approximated and exact p0

p
-1 0 1

-1

0

1

p

approximated and exact p1

-1 0 1

0

1

approximated and exact p2

p
-1 0 1

-1

0

1
approximated and exact p3

p

approximated value
exact value

-1 0 1
-1.5

0

1.5
x 10

-16

p

approximation
error of p0

-1 0 1
-1

0

1x 10
-3

approximation
error of p1

p

-1 0 1
-9

1x 10
-4

approximation
error of p2

p
-1 0 1

-8

0

8x 10
-3

approximation
error of p3

p

(a)

(b)

Fig. 3. (a) Comparison between the approximated and exact zeroth (p0), first (p1), second (p2) and third (p3) powers of polynomial

terms for p 2 [�1, 1] and (b) Approximation errors of the zeroth (p0), first (p1), second (p2) and third (p3) powers of polynomial terms.

Note that the orders of magnitude in Part (b) are 10�16, 10�3, 10�4 and 10�3, respectively.

J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505 4491

4492 J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505
In the case of two inputs, any hidden node output, h, can be viewed as a function of input, p1 and p2. This

function is expressed by
hðp1; p2Þ ¼
1

1þ e�ðw1p1þw2p2�bÞ . ð13Þ
The Taylor series expansion of this bi-variable function could be used to extend the method used in Sec-

tion 2, however, there is a shortcut by directly utilizing the results in the single-variable case and this will be

adopted here. The key step is to use algebraic identities. Note that this methodology differs from that in

[15,16]. What is presented here can be readily applied to other multi-variable case as long as the correspond-

ing algebraic identities are adopted.
3.1. Forming z � p1p2 using a one-hidden layer feedforward neural network

The algebraic identity used here is
p1p2 ¼ 1
4
½ðp1 þ p2Þ

2 � ðp1 � p2Þ
2�. ð14Þ
Two intermediate variables are defined as follows:
u1 ¼ p1 þ p2 ¼ ½ 1 1 �
p1
p2

� �
¼ �w

½1;1�
1;1 p;

u2 ¼ p1 � p2 ¼ ½ 1 �1 �
p1
p2

� �
¼ �w

½1;1�
1;2 p;

ð15Þ
where the numbers 1 and 1 in the superscript [1, 1] denote the powers of p1 and p2 to be approximated,

respectively. The linear transform from p ¼ ½ p1 p2 �
T
to u ¼ ½ u1 u2 �T is equivalent to a neural network

operation of passing a weighted sum of input vector p through a linear activation function to get the output

vector u, as shown in Fig. 4(a).
Substituting Eq. (15) into (14) results in the following:
p1p2 ¼ 1
4

� 1
4

� � ðu1Þ2

ðu2Þ2

" #
¼ �w

½1;1�
2

ðu1Þ2

ðu2Þ2

" #
¼ �w½1;1�

2;1 �w½1;1�
2;2

h i ðu1Þ2

ðu2Þ2

" #
ð16Þ
which means the target function, p1p2, is a linear sum of the second power of the components of vector u. Its

equivalent neural network operation is shown in Fig. 4(c). Again, a linear activation function is adopted

here.

The two neural networks shown in Fig. 4(a) and (c) can be connected if there is a certain neural network

to which sending each component of vector u as an input, will obtain its second power as an output. The

exact solution may not be provided by a neural network, however, a neural network already derived in

approximating the second power can be adopted as reproduced in Fig. 4(b).

The entire neural network in Fig. 4(a)–(c) has three hidden layers. However, it can be condensed into a
network with only one hidden layer as shown in Fig. 4(d). This simplification is based on the existence of

two linear activation functions. Hidden nodes with sigmoidal activation functions remain unchanged while

nodes with linear activation function are eliminated after their adjacent layers have been combined. New

weighting matrices are the products of old weighting matrices as shown in [19]. A set of numerical values

is presented in Table 2 following the derived weights and biases for the second power in the same table.

As indicated by Eq. (16), the error bound is entirely determined by the neural network second power

estimator.

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

ΣΣ

Σ Σ

w
2,2
[2]

w
2,3
[2]

w
2,4
[2]

w
1,3
[2]

b
1
[2]

0

0

w
2,1
[2]

w
1,1
[2]

w
1,3
[2]

b
1
[2]

w
1,1
[2]

w
2,2
[2]

w
2,3
[2]

w
2,4
[2]

w
1,3
[2]

b
1
[2]

0

0

w
2,1
[2]

w
1,1
[2]

w
1,3
[2]

b
1
[2]

w
1,1
[2]

-

-

-

-

u
1

u
2

_

_

≈(u
2
)2

≈(u
1
)2

Σ z≈p
1
p

2

p2

p1

_

w
1
[2]

w
2
[2]

component of weighting vector
Legend

(b)(a) (c)

1

1

-1

1

1/4

-1/4

w
1,1
[1,1]

w
1,2
[1,1]

w
2
[1,1]

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

b
1
[2]

0

0

b
1
[2]

b
1
[2]

0

0

b
1
[2]

Σ z≈p
1
p

2

p
2

p
1

component of weighting vector
Legend

w
1,8
[1,1]

w
1,7
[1,1]

w
1,3
[1,1]

w
1,4
[1,1]

w
1,2
[1,1]

w
1,6
[1,1]

w
1,5
[1,1]

w
2
[1,1]

w
1,1
[1,1]

(d)

Fig. 4. Neural network architecture used in approximating term p1p2 with (a), (b) and (c) showing detailed substructures, and (d) showing condensed neural network

architecture used in approximating term p1p2. p1 2 [�1, 1] and p2 2 [�1, 1].

J
.-S

.
P
ei

et
a
l.
/
C
o
m
p
u
t.
M
eth

o
d
s
A
p
p
l.
M
ech

.
E
n
g
rg
.
1
9
4
(
2
0
0
5
)
4
4
8
1
–
4
5
0
5

4
4
9
3

4494 J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505
3.2. Forming z � (p1)
2p2 using one-hidden layer feedforward neural network

The algebraic identity used here is
ðp1Þ
2p2 ¼ 1

6
ðp1 þ p2Þ

3 � 1
6
ðp1 � p2Þ

3 � 1
3
ðp2Þ

3
. ð17Þ
Three intermediate variables are defined as follows:
u1 ¼ p1 þ p2 ¼ ½ 1 1 �
p1
p2

� �
¼ �w

½2;1�
1;1 p;

u2 ¼ p1 � p2 ¼ ½ 1 �1 �
p1
p2

� �
¼ �w

½2;1�
1;2 p;

u3 ¼ p2 ¼ ½ 0 1 �
p1
p2

� �
¼ �w

½2;1�
1;3 p;

ð18Þ
where the numbers 2 and 1 in the superscript [2, 1] denote the powers of p1 and p2 to be approximated,

respectively. The linear transform from p ¼ p1 p2½ �T to u ¼ ½ u1 u2 u3 �T is equivalent to a neural net-

work operation of passing the weighted sum vector of input vector p through a linear activation function

to get the output vector u, as shown in Fig. 5(a).

Substituting Eq. (18) into (17) results in the following:
ðp1Þ
2p2 ¼ 1

6
� 1

6
� 1

3

� � ðu1Þ3

ðu2Þ3

ðu3Þ3

2
6664

3
7775 ¼ �w

½2;1�
2

ðu1Þ3

ðu2Þ3

ðu3Þ3

2
6664

3
7775 ¼ �w½2;1�

2;1 �w½2;1�
2;2 �w½2;1�

2;3

h i ðu1Þ3

ðu2Þ3

ðu3Þ3

2
6664

3
7775 ð19Þ
which means the target function, (p1)
2p2, is a linear sum of the third power of the components of vector u.

Its equivalent neural network operation is shown in Fig. 5(c). Again, a linear activation function is used

here.

The two neural networks shown in Fig. 5(a) and (c) can be connected if there is a certain neural net-

work to which sending each component of vector u, as an input, will obtain its third power as an

output. The exact solution may not be provided by a neural network, however, a neural network as

derived in approximating term p3 can be used to approximate the third power, and it is reproduced here

in Fig. 5(b).

The entire neural network shown in Fig. 5(a)–(c) has three hidden layers. However, it can be condensed
into a network with only one hidden layer as shown in Fig. 5(d). This simplification is based on the

existence of two linear activation functions. Hidden nodes with sigmoidal activation function remain un-

changed while nodes with linear activation function are eliminated after their adjacent layers have been

combined. New weighting matrices are the products of old weighting matrices as shown in [19]. A set of

numerical values is presented in Table 2 following the derived weights and biases for the second power

in the same table.

As indicated by Eq. (19), the error bound is entirely determined by the neural network third power esti-

mator. Fig. 6 shows the comparison between the target and output function of the derived neural network,
as well as the approximation error. It can be seen that the approximation is very satisfactory for both cases.

The above procedure can be generalized to multi-variable cases as long as an algebraic identity can be

found for the desired powers of cross terms. The efficiency of sigmoidal functions in approximating poly-

nomials can be seen from the study on both one- and two-variable cases.

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

ΣΣ

Σ Σ

w
2,4
[3]

w
2,5
[3]

w
2,6
[3]

w
1,5
[3]

0

0

w

w
1,3
[3]

w
1,5
[3]

w
1,3
[3]

[3]

w
2,2
[3]

w
2,3
[3]

w
2,4

w
1,3
[3]

b
1
[3]

0

0

0

w
2,1
[3]

w
1,1
[3]

w
1,3
[3]

b
1
[3]

w
1,1
[3]

-

-

-

u
1

u
3

_

_

≈(u
3
)3

≈(u
1
)3

Σ

p
2

p
1

_

w
1
[3]

w
2
[3]

component of weighting vector
Legend

(b)(a) (c)

1

1

1

Σ

Σ
b

1
[3]

b
1
[3]

Σ

Σ

Σ

Σ

Σ

Σ

0

0

Σ

Σ
b

1
[3]

b
1
[3]

Σ
u

2

Σ
≈(u

2
)3

_

-

0

0

-

0

0

-

0

w
2,2
[3]

w
2,1
[3]

w
1,1
[3]

w
1,1
[3]

w
1,3
[3]

w
1,3
[3]

-

w
1,5
[3]

w
1,5
[3]

-

w
1,5
[3]

w
1,5
[3]

-

w
2,4
[3]

w
2,3
[3]

w
2,6
[3]

w
2,5
[3]

w
2,2
[3]

w
2,1
[3]

w1,1

w
1,1
[3]

w
2,6
[3]

w
2,5
[3]

1/6

-1/6

-1/3

-1

0

1

w
1,1
[2,1]

w
1,2
[2,1]

w
1,3
[2,1]

w
2
[2,1]

z≈(p
1
)2p

2

[3]
2,3

[3]

Σ

Σ

Σ

Σ

Σ

b
1
[3]

0

0

b
1
[3]

0

Σ z≈p
1
p

2

p
2

p
1

component of weighting vector
Legend

3rd node

4th node

18th node

2nd node

1st node

w
1,1
[2,1]

w
1,3
[2,1]

w
1,18
[2,1]

w
1,2
[2,1]

w
1,4
[2,1]

w
2
[2,1]

2

(d)

Fig. 5. Neural network architecture used in approximating term (p1)
2p2 with (a), (b) and (c) showing detailed substructures, and (d) showing condensed neural network

architecture used in approximating term (p1)
2p2 Æ p1 2 [�1, 1] and p2 2 [�1, 1].

J
.-S

.
P
ei

et
a
l.
/
C
o
m
p
u
t.
M
eth

o
d
s
A
p
p
l.
M
ech

.
E
n
g
rg
.
1
9
4
(
2
0
0
5
)
4
4
8
1
–
4
5
0
5

4
4
9
5

Fig. 6. Comparison between (a) the approximated and (b) the exact p1p2 and ðp1Þ
2p2, and (c) the estimation errors of the both terms.

Note the order of magnitude of the errors in Panel (c) is 10�3. p1 2 [�1, 1] and p2 2 [�1, 1].

4496 J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505
4. Fixed-weight training method

Sections 2 and 3 demonstrate how to approximate individual polynomial terms of input using networks

with one hidden layer and the sigmoidal activation function. These individual networks with specified

weights and biases can be assembled in parallel with another layer built on top to form a new neural net-

work. This new network can be used to perform polynomial fitting of its input–target pairs. When this
network is trained, not all the weights and biases need to be updated. Those weights and biases inherited

from fitting each individual polynomial term are fixed throughout the training; the only weights to be

trained are those related to the coefficients of polynomials. This feature distinguishes this training method

from others and also explains why it is called fixed-weight training method, which originated from neural

networks in pattern classification [9]. The fixed-weight training method within the specified architecture will

lead to unique solutions as will be discussed later in Section 5.

4.1. Basic network architecture for fixed-weight training approach

To carry out polynomial fitting using the fixed-weight training method, a neural network with two hid-

den layers is designed. A sigmoidal function with bias is used in the first hidden layer, while a linear acti-

vation function with no bias is used for second hidden and output layer. The number of nodes in hidden

layers are determined by the desired accuracy. Weights in Layers 1 (from input to the first hidden layer) and

2 (from the first to second hidden layer) are directly adopted from individual polynomial fitting and remain

unchanged throughout the training. Weights in Layer 3 (from the second hidden to output layer), however,

are the coefficients to be identified; these weights are the only parameters to be trained.

J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505 4497
For the single-input–single-output case (i.e., one-variable polynomial fitting), the architecture shown in

Fig. 7(a) is appropriate for polynomial fitting from the zeroth up to third power. It can be seen that the four

nodes in the second hidden layer correspond to zeroth to third power of the input, respectively, while the

four trained weights of Layer 3 are simply the approximations of the coefficients of the zeroth to third

powers. Under this design, trained weights have very specific and unique meaningful ‘‘interpretations’’.
The fourteen nodes in the first hidden layer and their corresponding weights and biases are carried over

from the examples of approximating individual integer powers in Section 2 provided that the accuracy is

acceptable. If a different degree of accuracy is required, the number of nodes as well as the values of weights

and biases should be re-derived.

The neural network shown in Fig. 7(a) is not fully connected but can be made so as shown in Fig. 7(b).

The weights are set to zero along the imaginary connections represented by the thin lines. With this fully

connected network architecture, a weighting matrix can be used for Layer 2, which then enables the appli-

cation of matrix and vector based training algorithms.
After training, the architecture shown in Fig. 7(b) can be further converted into a network with one hid-

den layer. This is because the second hidden layer uses a linear activation functions with no biases. The

equivalent network with a total of 14 hidden nodes is shown in Fig. 7(c). Note that the weighting vector

of Layer 1 remains the same while that of the new Layer 2 is the matrix product of the weights in former

Layers 2 and 3. This network serves as an example of how to approximate an arbitrary polynomial function

up to third power using a network with only one hidden layer. The 14 nodes adopted here are not neces-

sarily the least number of nodes; this required number is inherited from the way individual polynomial

terms are approximated and therefore, related to approximation accuracy.
The same philosophy applies to the case of double-input–single-output (i.e., two-variable polynomial fit-

ting). Fig. 8(a) shows an architecture that is able to fit all the combinations from the zeroth up to third

power, while Fig. 8(b) shows the corresponding fully connected network. The equivalent architecture after

training with one hidden layer is shown in Fig. 8(c). In total, 70 nodes are used in the condensed architec-

ture above. Note that all of these three architectures can only meet a certain approximation accuracy

requirement. For higher accuracy, network approximating individual polynomial terms needs to be re-

derived to meet the higher accuracy and then assembled in parallel following the manner presented here.

4.2. Training algorithm

Training neural networks is a numerical procedure. Training algorithms need to be numerically stable

and converge rapidly within the length of a given input–target data set. The row weighting vector at Layer

3 is initialized as zero at the beginning of the training, i.e., w(0) = 0. It will be shown in the Discussion that

this set of initial values will not affect the final trained values. The fixed-weight training procedure adopted

in this study can be described in the following steps and Figs. 7(b) and 8(b) can be referred to for the

referred neural network architecture.

Step 1. Pass the input column vector p(t) through Layer 1 to obtain /1(t), the column output vector of

Layer 1. The dimension of /1(t) equals the number of hidden nodes in the first hidden layer, nh1 ,
while the jth component of /1(t) is an individual sigmoidal result of p(t). Symbolically,
/1;jðtÞ ¼ Sðw1;jpðtÞ þ bjÞ; j ¼ 1; . . . ; nh1 ; ð20Þ
where wi,j is the row weighting vector related to jth hidden node, and bj the bias scalar.

Step 2. Pass the column vector /1(t) through Layer 2 to obtain /2(t), the column output vector of Layer 2.

A matrix–vector product is involved here:
/2ðtÞ ¼ W2/1ðtÞ. ð21Þ

Σ

Σ

Σ

Σp

Σ

Σ

Σ

Σ

0

0

Σ

Σ
b

1
[3]

b
1
[3]

Σ

-

0

0

z
Σ

Σ

Σ

0

Σ
b

1
[2]

0

Σ

Σ
0

0

Σ

Σ
0

0

≈p3

≈p2

≈p

≈p0

b
1
[2]

Layer 1 Layer 2 Layer 3

w
1
[3]

component of weighting vector
Legend

w
1
[1]

w
1
[2]

w
1
[0]

w
2
[3]

w
2
[1]

w
2
[2]

w
2
[0]

w

1

Σ

Σ

Σ

Σp

w
1
[3]

component of weighting vector
Legend

Σ

Σ

Σ

Σ

0

0

Σ

Σ
b

1
[3]

b
1
[3]

Σ

-

0

0

z
Σ

Σ

Σ

0

Σ
b

1
[2]

0

Σ

Σ
0

0

Σ

Σ
0

0

w
1
[1]

w
1
[2]

w
1
[0]

w
2
[3]

w
2
[1]

w
2
[2]

w
2
[0]

w
≈p3

≈p2

≈p

≈p0

b
1
[2]

Layer 1 Layer 2 Layer 3
(fully connected)

with zero weight

1

Σp

Σ

Σ

Σ

Σ

0

0

Σ

Σ
b

1
[3]

b
1
[3]-

0

0

z
Σ

Σ

Σ

0

Σ
b

1
[2]

0

Σ

Σ
0

0

Σ

Σ
0

0

b
1
[2]

Layer 1 Layer 2

w
1
[3]

component of weighting vector
Legend

w
1
[1]

w
1
[2]

w
1
[0]

w
2
[3]

w
2
[1]

w
2
[2]

w
2
[0]

w

(new)

~

(a) (b) (c)

Fig. 7. A schematic neural network architecture used to demonstrate the idea of conducting one-variable polynomial fitting up to third power, where the input is

normalized.

4
4
9
8

J
.-S

.
P
ei

et
a
l.
/
C
o
m
p
u
t.
M
eth

o
d
s
A
p
p
l.
M
ech

.
E
n
g
rg
.
1
9
4
(
2
0
0
5
)
4
4
8
1
–
4
5
0
5

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

≈

≈

≈

≈

Layer 1 Layer 2 Layer 3

component of weighting vector
Legend

to be determined

Σ ≈

Σ ≈

Σ ≈

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

≈

≈

Σ ≈

(p
1
)0

(p
1
)

(p
1
)2

(p
1
)

p
1
p

2

(p
2
)1

(p
2
)2

(p
1
)2p

2

p
1
(p

2
)

(p
2
)3

p
1

p
2

z

p
1

p
2

p
1

p
2

related purely to

related purely to

related to both and

1st node

2nd node

3rd node

4th node

5th node

21st node

24th node

25th node

42nd node

43rd node

6th node

7th node

14th node

15th node

20th node

58th node

64th node

65th node

70th node

59th node

1

2

3

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

≈

≈

≈

Layer 1 Layer 2 Layer 3

Σ ≈

Σ ≈

Σ ≈

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

≈

Σ ≈

(p
1
)0

(p
1
)2

(p
1
)

p
1
p

2

(p
2
)1

(p
2
)2

(p
1
)2p

2

(p
2
)3

p
1

p
2

z

1st node

2nd node

3rd node

4th node

5th node

21st node

24th node

25th node

42nd node

43rd node

6th node

7th node

14th node

15th node

20th node

58th node

64th node

65th node

70th node

59th node

(fully connected) (fully connected)

(an example for
every node in this layer)

≈

≈p
1
(p

2
)

(p
1
) 1

2

3

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Layer 1 Layer 2

component of weighting vector
Legend

to be determined

Σ

Σ

Σ

Σ

Σ

Σ

p
1

p
2

z

p
1

p
2

p
1

p
2

related purely to

related purely to

related to both and

1st node

70th node

(new)

59th node

2nd node

3rd node

4th node

5th node

6th node

7th node

14th node

15th node

20th node

21st node

24th node

25th node

42nd node

43rd node

58th node

64th node

65th node

component of weighting vector
Legend

to be determined

p
1

p
2

p
1

p
2

related purely to

related purely to

related to both and

with zero weight

(a) (b) (c)

Fig. 8. A schematic neural network architecture used to demonstrate the idea of conducting two-variable polynomial fitting up to third power, where the inputs are

normalized.

J
.-S

.
P
ei

et
a
l.
/
C
o
m
p
u
t.
M
eth

o
d
s
A
p
p
l.
M
ech

.
E
n
g
rg
.
1
9
4
(
2
0
0
5
)
4
4
8
1
–
4
5
0
5

4
4
9
9

4500 J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505
The dimension of /2(t) equals the number of hidden nodes in the second hidden layer, nh2 . There-
fore, weighting matrixW2 has a dimension of nh2 � nh1 . Note that the weights and biases in Layers 1

and 2 are fixed throughout the training.

Step 3. Pass /2(t) through Layer 3 to obtain z(t), the output of the network. Another matrix–vector prod-

uct is involved here:
zðtÞ ¼ wðtÞ/2ðtÞ; ð22Þ

where w(t) is the row weighting vector to be trained in Layer 3, when the output z(t) is a scalar.

Step 4. Update weights w(t),
wðt þ 1Þ ¼ wðtÞ þ DwðtÞ; ð23Þ

where Dw(t) is determined based on current estimate error vector g(t) � z(t), i.e. the difference be-

tween target and output of the network at the current time step. In this study, the LMS algorithm

(see, e.g., [7]) can be used, where the design constant, learning rate c, is a small constant that needs

to be specified beforehand. The weight updating rule can be expressed by
DwðtÞ ¼ c½gðtÞ � zðtÞ�/2ðtÞ
T
. ð24Þ
Step 5. Return to Step 1 and repeat. Training stops when all input–target pairs are utilized or when a cer-

tain error criterion is met.

In the above procedure, function nonlinearity is only introduced in Step 1 due to the use of sigmoidal
functions. Note that the weights are updated after each input–target data pair is presented. This procedure

can be classified as the incremental training mode [6]. In terms of the application in system identification, this

training approach is for online identification (i.e., real-time).
4.3. Training examples

Figs. 9 and 10 present two training examples using the fixed-weight training procedure combined

with the architecture shown in Fig. 7(b) for one input, or Fig. 8(b) for two uncorrelated inputs, respec-
tively. These examples are directly related to approximating a nonlinear restoring force as a function

of displacement only, or both displacement and velocity, respectively. In both cases, the inputs to the

network have random values between �1 and +1, while the target value is a polynomial of the input(s)

with all the coefficients equal to one for all the terms from the zeroth to third power. For the conve-

nience of demonstration, they are arbitrarily assigned to be unity. There are 1000 pairs in the input–target

data set.

Selecting the learning rate c in Eq. (24) is important because it governs the convergence. In Fig. 9, the

learning rate is chosen to be 0.40 because, based on trial and error, it gives the smallest output fitting error.
This example shows the convergence of all the learned coefficients. Compared with their actual values, all

the learned coefficients have satisfactory accuracy. In Fig. 10, the learning rate is 0.27. Similarly, it gives the

smallest output fitting error based on trial and error. This example also shows the convergence of all the

learned coefficients. Compared with their actual values, almost all of the learned coefficients have satisfac-

tory accuracy; the terms of (p1)
2p2 and p1(p2)

2 have less satisfactory accuracies with about 5% error. These

errors may be reduced by improving the approximation accuracy of the individual polynomials especially

that of the cubic term. Based on the number of nodes used in the approximation, the results are considered

acceptable and further improvement can be achieved.
Table 3 summarizes the estimation errors for both the polynomial terms and learned coefficients. The

error in approximating polynomials has been analyzed in Section 2, while the error in the learned coeffi-

cients may come from three sources:

0 200 400 600 800 1000

-1

0

1

time increment

single input to network

0 200 400 600 800 1000
0

1

2

3

4

time increment

target value of network

0 200 400 600 800 1000
-1

0

1

2

time increment

output fitting error = target - output

0 200 400 600 800 1000
0

1

2
learned coefficient of p0

0 200 400 600 800 1000
0

1

2

0 200 400 600 800 1000
0

1

2
learned coefficient of p2

learned coefficient of p1

0 200 400 600 800 1000
0

1

2

time increment

learned coefficient of p3

1.000034

0.998629

0.999363

0.995622

Fig. 9. A numerical application example of the neural network used for conducting one-variable polynomial fitting. The normalized

input, target and output fitting error are shown in the figure.

J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505 4501
1. the number of nodes included in the second hidden layer;

2. estimation error of individual polynomial terms, as analyzed in Section 2; and

3. truncation error of the derived weights for individual polynomial terms.
5. Discussion and conclusion

5.1. Significance

Normally when a neural network approach is adopted, a problem will immediately arise regarding the

initial network setup. For a multilayer feedforward neural network, the number of hidden layers and hid-

den nodes in each layer need to be determined, however there is a lack of clearly defined procedures as guid-

ance or at least as a point of reference. In this sense, this study presents an analytic approach to address the

basic question on the number of needed hidden nodes for an important class of function approximation
tools—polynomials and polynomial fitting. For example, if polynomial fitting is conducted up to the third

power, the numbers of hidden nodes needed are 14 and 70 for one- and two-variable cases, respectively,

provided that the required accuracy is comparable with that used in this study. For example, the results

0 200 400 600 800 1000

-1

0

1

time increment

first input to network

0 200 400 600 800 1000

-1

0

1

time increment

second input to network

0 200 400 600 800 1000
-2

0

2

4

6

8

10

time increment

target value of network

0 200 400 600 800 1000
-2

0

2

4

6

time increment

output fitting error = target - output

0 200 400 600 800 1000
-1

0

1

2
learned coefficient of constant term

0 200 400 600 800 1000
-1

0

1

2

learned coefficient of p
1

0 200 400 600 800 1000
-1

0

1

2

learned coefficient of p
2

0 200 400 600 800 1000
-1

0

1

2

learned coefficient of p
1
p

2

0 200 400 600 800 1000
-1

0

1

2

learned coefficient of (p
1
)2

0 200 400 600 800 1000
-1

0

1

2

learned coefficient of (p
2
)2

0 200 400 600 800 1000
-1

0

1

2

learned coefficient of (p
1
)2p

2

0 200 400 600 800 1000
-1

0

1

2

learned coefficient of p1(p
2
)2

0 200 400 600 800 1000
-1

0

1

2

time increment

learned coefficient of (p
1
)3

0 200 400 600 800 1000
-1

0

1

2

time increment

learned coefficient of (p
2
)3

1.000283 0.998358

1.000890 0.998337

0.998836 0.998508

0.950298 0.953030

0.995342 0.992093

Fig. 10. A numerical application example of the neural network used for conducting two-variable polynomial fitting. The normalized

inputs, target and output fitting error are shown in this figure.

Table 3

Summary of the estimated error for the normalized input cases as in Figs. 3, 6, 9 and 10

Term Relative error in estimated

polynomial term cf. Figs. 3 and 6

Relative error in learned coefficient

cf. Figs. 9 and 10 (%)

p0 <1.5 · 10�16 �0.0034

p1 <1.0 · 10�3 0.1371

p2 <9.0 · 10�4 0.0637

p3 <7.0 · 10�3 0.4378

Constant term <1.5 · 10�16 �0.0283

(p1)
1 <1.0 · 10�3 0.1642

(p2)
1 <1.0 · 10�3 �0.0890

p1p2 <4.0 · 10�3 0.1663

(p1)
2 <9.0 · 10�4 0.1164

(p2)
2 <9.0 · 10�4 0.1492

(p1)
2p2 <6.0 · 10�3 4.9702

p1(p2)
2 <6.0 · 10�3 4.6970

(p1)
3 <7.0 · 10�3 0.4658

(p2)
3 <7.0 · 10�3 0.7907

4502 J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505

J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505 4503
of this study have been directly adopted in [19,22,20,21] to model nonlinear hysteresis restoring forces of

mechanical and structural systems.

Note again that these numbers of hidden nodes are not necessarily the least numbers, as the derivation of

the least number of hidden nodes is not a goal of this work. This study aims to demonstrate quantitatively

the equivalence between a neural network and a polynomial fitting scheme so as to demystify the ‘‘black-
box’’ type approach, therefore, the authors� interest is on how to derive a set of hidden nodes for a given

polynomial.

5.2. Uniqueness of trained/learned weights from fixed-weight training method

The way in which a multilayer feedforward neural network is normally used is compared with the fixed-

weight training method especially in terms of the uniqueness of the trained results.

To start to train a neural network in the way that it is normally used, the neural network architec-
ture shown in Figs. 7(b) and 8(b) will be ‘‘borrowed’’ to overcome the uncertainty in the initial setup

because there is no other solid rationale on how to choose a proper architecture to conduct a polynomial

fitting.

Since backpropagation is normally associated with slow training, a fast backpropagation training algo-

rithm as well as batch training mode will be adopted to reflect a common situation in practice. The batch

training mode refers to having the weights and biases updated only after the entire training set has been pre-

sented to the neural network [6]. The Levenberg–Marquardt training algorithm will be selected as a fast

backpropagation algorithm. Using the analytically derived architecture shown in Figs. 7(b) and 8(b) and
the training data sets in Figs. 9 and 10, respectively, the training will run for 1000 epochs in each training

case where the term epoch is defined as the presentation of the training data set to a neural network all to-

gether in a batch [6]. Note that the term epoch as defined is not the same as the time increment used in the

fixed-weight training. With regard to system identification, the batch training mode presented in terms of

the epoch can be thought of as off-line identification, while the incremental training mode presented in

terms of the time increment can be considered to be online identification.

The nonuniqueness issue of neural network modeling approaches, where trained network parameter

results vary depending on their initial values, is well known. Take a one-variable function as an example,
Table 4 is used to illustrate this phenomenon. For the purpose of demonstration, the weights and biases of

Layers 1 and 2 in Fig. 7(b) are initialized using the Nguyen-Widrow layer initialization function [6] and kept

the same for all the training cases 1–3. The initial weighting vector in Layer 3 is the only quantity that will

vary. In Case 1, the initial weighting vector is set to be a zero vector, while in Cases 2 and 3 small numbers

generated randomly with zero means are used for the initial values. These random numbers have the stan-

dard deviations (denoted by r) of 0.1 and 0.5 in Cases 2 and 3, respectively. All the weights and biases are

trained, but only the trained weighting vectors in Layer 3 are presented in Table 4 to demonstrate the non-

uniqueness. The difference between the trained weights at epoch 1000 can be clearly seen for these three
cases as they are the result of different sets of initial values.
Table 4

Values of the trained weights in Layer 3 in Fig. 7(b) when all the weights and biases are trained with different sets of initial values

Identified coefficient of Case 1 Case 2 Case3

Initial Learned Initial Learned Initial Learned

p0 0 2.9549 0.0110 �3.2148 �0.1320 4.0645

p1 0 �0.1632 0.2732 0.0488 1.2477 3.9741

p2 0 �2.6762 0.0411 2.5752 0.4280 0.7398

p3 0 1.7003 �0.1307 1.1950 �0.4255 2.6825

4504 J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505
By contrast, the weights in Layer 3 obtained from the fixed-weight training method are insensitive to the

variation of their initial values. In an exercise in [19], the input–target data and learning rate used are the

same with those in Figs. 9 and 10. The ideal values of the weights are all one. The initial values tested in-

clude several cases. One case is all zero, the corresponding training results can be found in Table 3. In the

other cases, the initial values are the random numbers of zero mean. The standard deviations considered are
0.1, 0.2, 0.3, 0.4 and 0.5, respectively. Pei [19] illustrated that all the trained weights are only slightly dif-

ferent from one another for both one- and two-variable cases, and these differences are negligible compared

to the differences in trained weights in Table 4. It may be proper to state that the fixed-weight training

method is able to yield a unique solution when the weights in only one layer are to be trained. For a given

learning rate, the variation in the trained weights is nominal when their initial values vary within a reason-

able range. This is an advantage of adopting the fixed-weight training method for polynomial fitting. As

pointed out previously, these trained weights in Layer 3 have real ‘‘meanings’’; they are the identified coef-

ficients of polynomial terms. This is another feature of the fixed-weight training method that the commonly
used training approach cannot match.

5.3. Limitations

Though the fixed-weight training method could lead to unique trained results and meaningful interpre-

tations of weights, it should be noted that the adaptivity of the neural network is sacrificed when many lay-

ers are fixed during the training. The architecture in Figs. 7(b) and 8(b) could be used to fit a wider range of

functions, however, in their partially constrained state they are merely for polynomial fitting. Recall the key
focus of this study is to bridge the gap between the soft and hard computing through the example of poly-

nomial fitting, it can be seen that the challenges of dealing with multilayer feedforward neural networks

(and even neural networks in general) in a rational and transparent fashion are tremendous. The efforts

made in [19,22,20,21] and this study mark the initial efforts. In particular, in this study, it has been dem-

onstrated how neural networks can be designed to approximate a known type of mathematical functions.

This is the first step to understanding how neural networks can be designed to solve unknown types of prob-

lems as are commonly encountered in engineering practice.

In terms of the details in this study, note first that the derivations of the number of hidden nodes and
values of weights and biases are for normalized inputs only. If the inputs are not normalized, the approx-

imation error is proportional to the power of the input (see Section 2), which could be significant. More

nodes are needed in such a case to directly approximate the inputs that are not normalized. In Table 2,

the significant digits are quite high for the weights in Layer 2 for a majority of cases. This is due to the

requirement on the approximation accuracy. More nodes could be added if adopting lower significant digits

to retain the degree of accuracy.

It should also be noted that this study focuses on the logistic sigmoidal function as in Eq. (3) as basis

function. The results here can be readily applied to the hyperbolic tangent sigmoidal function based on
the similarity of its definition to that of the logistic sigmoidal function. In either case, differentiability of

the basis function is required to enable the Taylor series expansion.

Given the motivation in Section 1.1 and objectives in Section 1.4, it is important to note that this analytic

study leads to injecting features of parameterization to nonparametric approaches such as neural networks

for a wide range of engineering applications such as simulation, identification, health monitoring and dam-

age detection. This is achieved by matching the capability of sigmoidal basis functions with one of the most

popular basis functions, polynomials, in a constructive neural network design. Built on this work, another

study by the authors [20,21] has shown the superiority of neural networks based on a linear sum of sigmoi-
dal basis functions versus the traditional function approximation using polynomials and signum basis for a

range of typical nonlinearities in engineering mechanics. Engineering judgement is gained through this

line of study to guide neural network initial design and aid interpretation of training results, which directly

J.-S. Pei et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4481–4505 4505
facilitates proper and efficient uses of this highly adaptive and powerful computational tool in engineering

practice.
Acknowledgment

This study was supported in part by the National Science Foundation under SGER CMS-0332350 for

the first author and CAREER Award CMS-0134333 for the third author.
References

[1] A review of structural health monitoring literature: 1996–2001, Technical Report, Los Alamos National Laboratory, LA-13976-

MS, 2003.

[2] Special section: Phase i of the iasc-asce structural health monitoring benchmark, ASCE J. Engrg. Mech. 130 (1) (2004).

[3] M. Al-Hadid, J. Wright, Developments in the force-state mapping technique for non-linear systems and the extension to the

location of non-linear elements in a lumped-parameter system, Mech. Systems Signal Process. 3 (3) (1989) 269–290.

[4] F. Benedettini, D. Capecchi, F. Vestroni, Identification of hysteretic oscillators under earthquake loading by nonparametric

models, ASCE J. Engrg. Mech. 121 (5) (1995) 606–612.

[5] G. Cybenko, Approximation by superpositions of sigmoidal function, Math. Control Signals Systems 2 (1989) 303–314.

[6] H. Demuth, M. Beale, Neural Network Toolbox for Use with MATLAB, The Math Works Inc., 1998.

[7] M. Hagan, H. Demuth, M. Beale, Neural Network Design, PWS Publishing Company, 1995.

[8] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2 (1989)

359–366.

[9] W. Huang, R. Lippmann, Neural net and traditional classifiers, in: D. Anderson (Ed.), Neural Information Processing Systems,

American Institute of Physics, New York, 1988, pp. 387–396.

[10] L. Jones, Constructive approximations for neural networks by sigmoidal functions, Proc. IEEE 78 (10) (1990) 1586–1589.

[11] A. Lapedes, R. Farber, in: D. Anderson (Ed.), Neural Information Processing Systems, American Institute of Physics, New York,

1988, pp. 442–456.

[12] R. Lippmann, Pattern classification using neural networks, IEEE Commun. Mag. (November) (1989) 47–64.

[13] S. Masri, G. Bekey, H. Sassi, T. Caughey, Non-parametric identification of a class of nonlinear multidegree dynamic systems,

Earthquake Engrg. Struct. Dynamics 10 (1982) 1–30.

[14] S. Masri, T. Caughey, A nonparametric identification technique for nonlinear dynamic problems, J. Appl. Mech. 46 (June) (1979)

433–447.

[15] A. Meade, Regularization of a programmed recurrent artificial neural network, J. Guidance Control Dynamics (2003).

[16] A. Meade, G. Lind, B. Zeldin, Feedforward artificial neural network initialization by mathematical models, Internat. J. Neural

Systems (1996).

[17] H. Mhaskar, Neural networks for optimal approximation of smooth and analytic functions, Neural Comput. 8 (1995) 164–177.

[18] K. O�Donnell, E. Crawley, Identification of nonlinear system parameters in space structure joints using the force-state mapping

technique, pp. 170, Technical Report, MIT Space Systems Lab., SSL#16-85, July 1985.

[19] J. Pei, Parametric and nonparametric identification of nonlinear systems, Ph.D. Dissertation, Columbia University, 2001.

[20] J. Pei, A. Smyth, A new approach to design multilayer feedforward neural network architecture in modeling nonlinear restoring

forces: Part i—formulation. ASCE J. Engrg. Mech., in press.

[21] J. Pei, A. Smyth, A new approach to design multilayer feedforward neural network architecture in modeling nonlinear restoring

forces: Part ii—applications. ASCE J. Engrg. Mech., in press.

[22] J. Pei, A. Smyth, E. Kosmatopoulos, Analysis and modification of volterra/wiener neural networks for identification of nonlinear

hysteretic dynamic systems, J. Sound Vib. 275 (3–5) (2004) 693–718.

[23] A. Smyth, J. Pei, S. Masri, System identification of the Vincent Thomas suspension bridge using earthquake inputs, Earthquake

Engrg. Struct. Dynamics 32 (2003) 339–367.

[24] A. Wieland, R. Leighton, Geometric analysis of neural network capabilities, in: IEEE First Internal Conference on Neural

Networks, vol. III, June 1987, pp. 385–392.

[25] K. Worden, G. Tomlinson, Nonlinearity in Structural Dynamics: Detection, Identification and Modelling, Institute of Physics

Pub., 2001, p. 680.

	Mapping polynomial fitting into feedforward neural networks for modeling nonlinear dynamic systems and beyond
	Introduction
	Motivation
	Capabilities of multilayer feedforward neural networks
	Mapping polynomials into neural networks for engineering applications
	Objectives

	Approximating polynomials: one-variable case
	Forming constant term, z ap p0=1, using a one-hidden layer feedforward neural network
	Forming first power, z ap p1, using a one-hidden layer feedforward neural network
	Forming second power, z ap p2, using a one-hidden layer feedforward neural network
	Forming third power, z ap p3, using a one-hidden layer feedforward neural network

	Approximating polynomials: two-variable case
	Forming z ap p1p2 using a one-hidden layer feedforward neural network
	Forming z ap (p1)2p2 using one-hidden layer feedforward neural network

	Fixed-weight training method
	Basic network architecture for fixed-weight training approach
	Training algorithm
	Training examples

	Discussion and conclusion
	Significance
	Uniqueness of trained/learned weights from fixed-weight training method
	Limitations

	Acknowledgment
	References

