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from deeply virtual Compton scattering (DVCS) data.

Keywords: Generalized parton distributions, deeply virtual Compton scattering, neural
networks.

PACS numbers: 13.60.—r, 13.60.Fz, 24.85.+p

1. Introduction

One of the prominent goals of hadron physics today is to determine the so called
generalized parton distributions (GPDs) which are functions known to provide a
detailed description of the nucleon in terms of partonic degrees of freedom!™3 (see
also extensive reviews in Refs. [4] and [5]). The knowledge of GPDs would essentially
give us the three-dimensional distribution of quarks and gluons inside the nucleon®
and would also provide information about how the spin of the proton is built from
the angular momenta of partons.”

Since GPDs are non-perturbative QCD quantities, they are not calculable from
first principles, except for their first few moments that are measurable in QCD
lattice simulations, see e.g. the review in Ref. [8]. Factorization theorems allow access
to GPDs via flexible model building and fitting to experimental measurements of
relevant observables, see recent reviews in Refs. [9] and [10].

In this note we report on and compare several methods of GPD extraction with
emphasis on local fits and neural networks approach.
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2. Methods and Results

The most popular method for accessing GPDs involves the comparison of model
predictions with data on cross-sections and asymmetries of deeply virtual Compton
scattering (DVCS), v*p — ~p, which is accessible in the exclusive electroproduction
of a photon, see e.g. Refs. [11,12] and comments in Refs. [9,13]. Note that via the
optical theorem the deeply virtual Compton scattering in forward kinematics, v*p —
~v*p, is related to inclusive deep inelastic scattering (DIS). Correspondingly, just like
in DIS the virtual photon probes the partonic structure of a hadron. However, in
DVCS this structure is probed by two photons, making the probe more powerful,
but also more difficult to use. The DVCS amplitude can be parameterized in terms
of Compton form factors (CFFs), which are given by the convolution of GPDs
with the Wilson coefficient functions from the operator product expansion of two
electromagnetic currents. E.g. for the best known CFF H and GPD H we have to
leading order (LO) accuracy
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where £ = xp/(2 — xp), xp is Bjorken’s scaling variable, ¢ is the square of the
momentum transfer, and ¢> = —Q? is the photon virtuality. It is often stressed
that this convolution formula makes it difficult to extract the (x,&)-shape of the
GPD. As we will see below, for the imaginary part the corresponding DIS formula,
expressing the structure function Fj in terms of quark parton distribution func-
tions (PDFs) q(x, Q?), is essentially the same, where the corresponding PDFs are
known to relatively high accuracy. Nevertheless, the dimensionality of the GPD
domain space is a serious obstacle in the search for the shape of GPD functions,
which might be overcome to some extent by a combined use of experimental and
lattice data. Of the four variables on which GPD H(z,&,t, Q%) depends, only the
dependence on the photon virtuality Q2 is predicted by perturbative QCD evolution
equations, which is also determined by the (z,&)-shape of the GPD at the input
scale. Knowledge of dependence on the other three kinematic variables, longitudinal
momentum fraction z, skewness £, or momentum transfer squared ¢ is poor. The
general properties of GPDs, such as the relations to PDFs, elastic form factors, and
generalized form factors, constrain GPDs only on borders of its domain space or by
sum rules, while GPDs in the “bulk” have to be determined by fits to independent
experiments or possibly by assuming some “holographic” principle,'® which in turn
might characterize a certain class of GPD models.

In the lack of truly reliable GPD models (which is the present state of affairs),
and faced with the multi-dimensional GPD domain space, currently available exper-
imental data are not sufficient to facilitate extraction of most GPDs. One possible
strategy to approach this problem is to determine first just the CFFs. These quan-
tities depend on one kinematic variable less than GPDs, see (1), which makes them
more constrained by measurements. Also, the DVCS coefficient functions at leading
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order of perturbation theory (“handbag” approach) are such that in this order the
imaginary part of CFFs determine the GPDs on the so-called cross-over line x = &,

1. 2

—m H(zp = Tre
Hence, knowledge of CFFs gives us also some direct information about GPDs. This
can be particularly well exploited if one uses dispersion relations to relate real
and imaginary part of CFFs — then the whole leading order (and leading twist)
phenomenology is determined by GPDs on the cross-over line and by a dispersion
relation subtraction constant that is related to the so-called D-term.'* Such an
approach was studied in Ref. [15] and was utilized for the valence quark sector
in Ref. [16] to perform a global GPD model fit, denoted as KMM12, that describes
available DVCS data from both collider and fixed target experiments reasonably
well.?

Relying on the scaling hypothesis, which might be justified for the existing data
from fixed target experiments, even modelling the GPDs on the cross-over line
(two-dimensional zp-t domain space) and subtraction constant (one-dimensional ¢
domain space) necessarily entails some model bias. In the analogous task of deter-
mination of PDFs, this problem is not so pronounced because domain space is
one-dimensional (just ), and large number of experimental data points is avail-
able. But here situation is much more problematic, and looking ahead and thinking
about actual modelling of complete GPD F(z,&,t) functions, we should better be
able to assess and control the amount of model bias we introduce.

One useful method, which is not sensitive to model bias, is performing local fits
to the data, where one extracts CFF values at a given kinematic point at which
possibly several different observables are measured. This is particularly interesting in
the case of DVCS measurements by HERMES collaboration, where indeed an almost
complete set of observables is measured in 12 kinematic bins.!” 2% In HERMES
kinematics, many measured asymmetries in ep — epy scattering are dominated
by the interference of DVCS (final photon emitted from proton) and Bethe-Heitler
scattering (photon emitted from lepton) amplitudes, and are thus almost linear in
CFFs. This leads to a well-defined mapping from asymmetries to CFFs and quite
a direct propagation of uncertainties. Study in Ref. [16] shows that few CFFs can
be clearly and unambiguously extracted, confirming previous similar findings.?! 22
CFFs extracted by such mapping method are depicted on Fig. 1, where they are
compared to CFFs extracted by standard least-squares local fits. As expected, the
imaginary part of CFF H (determined by GPD H, cf. (1)) is the most reliably
extracted quantity, thanks to its kinematically unsuppressed appearance in most
observables.

Such local fitting exercises are convenient tools to assess general consistency
of the whole theoretical and experimental GPD physics framework, thanks to the

OO H=664,Q%) ~Hr=-£6610%. (2

2Cross-sections predicted by this and some other models are publicly available at
http://calculon.phy.hr/gpd/.
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Fig. 1. Several local fits to HERMES data in 12 kinematic bins. Figure is taken from Ref. [16],
where also specification of kinematic bins can be found. Green stars are obtained by method of
mapping observables to all eight leading imaginary and real parts of CFFs, while red squares and
blue plusses are least-squares fits to a small number of dominant CFFs.

absence of modelling bias. However, they are of limited use and should be consid-
ered only as an intermediate step in the whole endeavour. Another method, which
sits nicely between model-independent local and model-dependent global fits is the
method of neural networks. This method promises in some sense to be the best of
both worlds: It is a global method, that can give us shape of the GPDs or CFFs
away from measured points (with uncertainty increasing away from these points
in a well-defined way), while at the same time being free of modelling bias, if one
carefully applies some method of overfitting avoidance, such as some form of cross-
validation. A first study, showing the viability of neural network approach on the
limited set of beam spin asymmetry and beam charge asymmetry HERMES data,
is described in Ref. [23] (see also toy example in Ref. [24]).

3. Conclusion

As described, several different fitting approaches have been tried in attempt to
extract the shapes of dominant structure functions (CFFs) and their associated
partonic quantities (GPDs), which contain also information on the transversal par-
tonic structure of the proton in the kinematics of HERMES experiment. There is
a clear agreement of the results from the different methods, showing consistency of
the whole framework. These studies give a clear idea of GPD information that can
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be accessed from presently available data, and can be used for guidance in finding
physically motivated GPD models, flexible enough to describe these data. For the
future it is expected that JLAB experiments will provide new high quality data
for an extended set of observables, which might allow in a global DVCS analysis
to remove, as it is already possible for HERMES data, assumptions and hypothe-
ses, while a planned COMPASS-IT experiment will help to fill the kinematical gap
between collider and fixed target data from HERA. To obtain a reliable determi-
nation of uncertainties of extracted GPDs/CFFs, the precise information about
correlations of uncertainties of experimental measurements would be very welcome,
like it has become standard in DIS experiments.

Acknowledgments

This work has been supported in part by the Croatian Science Foundation under
the project number 8799.

References

1. D. Miiller, D. Robaschik, B. Geyer, F. M. Dittes and J. Hotejsi, Fortschr. Phys. 42,

101 (1994), [hep-ph/9812448).

A. V. Radyushkin, Phys. Lett. B380, 417 (1996), [hep-ph/9604317].

X.-D. Ji, Phys. Rev. D55, 7114 (1997), [hep-ph/9609381].

M. Diehl, Phys. Rept. 388, 41 (2003), [hep-ph/0307382].

A. V. Belitsky and A. V. Radyushkin, Phys. Rept. 418, 1 (2005), [hep-ph/0504030].

M. Burkardt, Phys. Rev. D62, 071503 (2000), [hep-ph/0005108], FErratum-

ibid.D66:119903,2002.

X.-D. Ji, Phys. Rev. Lett. T8, 610 (1997), [hep-ph,/9603249)].

Ph. Higler, Phys. Rept. 490, 49 (2010), [hep-lat/0912.5483).

D. Miiller, Few Body Sys. 55, 317 (2014), [1405.2817].

M. Guidal, H. Moutarde and M. Vanderhaeghen, Rept. Prog. Phys. 76, 066202 (2013),

[1303.6600].

11. M. Vanderhaeghen P. A. M. Guichon and M. Guidal, Phys. Rev. D60, 094017, [hep-
ph/9905372].

12. P. Kroll, H. Moutarde and F. Sabatie, Eur. Phys. J. C73, 2278 (2013), [1210.6975].

13. K. Kumeric¢ki, D. Miiller and K. Passek-Kumericki, Fur. Phys. J. C58, 193 (2008),
[0805.0152].

14. M. V. Polyakov and C. Weiss Phys. Rev. D60, 114017 (1999), [hep-ph/9902451].

15. K. Kumericki and D. Miiller, Nucl. Phys. B841, 1 (2010), [0904.0458].

16. K. Kumericki, D. Miiller and M. Murray, Phys. Part. Nucl. 45, 723 (2014), [1301.1230].

17. HERMES, A. Airapetian et al., JHEP 06, 066 (2008), [0802.2499].

18. HERMES Collaboration, A. Airapetian et al., Phys. Lett. B704, 15 (2011),
[1106.2990].

19. HERMES Collaboration, A. Airapetian et al., JHEP 1207, 032 (2012), [1203.6287].

20. HERMES Collaboration, A. Airapetian et al., JHEP 1210, 042 (2012), [1206.5683].

21. M. Guidal, Eur. Phys. J. A37, 319 (2008), [0807.2355].

22. M. Guidal and H. Moutarde, Eur. Phys. J. A42, 71 (2009), [0905.1220].

23. K. Kumeri¢ki, D. Miiller and A. Schéafer, JHEP 07, 073 (2011), [1106.2808].

24. K. Kumericki, D. Miiller and A. Schéfer, Nucl. Phys. Proc.Suppl. 222-224, 199 (2012),
[1112.1958].

O otk

© L 2N

1660047-5



