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Abstract

We have generated a parametrization of the Compton form factor (CFF) H based
on data from deeply virtual Compton scattering (DVCS) using neural networks.
This approach offers an essentially model-independent fitting procedure, which pro-
vides realistic uncertainties. Furthermore, it facilitates propagation of uncertainties
from experimental data to CFFs. We assumed dominance of the CFF H and used
HERMES data on DVCS off unpolarized protons. We predict the beam charge-spin
asymmetry for a proton at the kinematics of the COMPASS II experiment.

1 Introduction

Generalized parton distributions (GPDs) [1–3] provide a detailed description of the nucleon
in terms of partonic degrees of freedom, which allows, e.g., to address the three-dimensional
distribution of quarks and gluons and the partonic decomposition of the nucleon spin [4].
Their determination improves our understanding of non-perturbative QCD dynamics in
general. More specifically, they are a necessary (though not sufficient) input for the the-
oretical description of multiple-hard reactions in proton-proton collisions at LHC collider
[5–7] and for other applications reaching beyond the limit of collinear QCD. Information on
GPDs comes from many sides. There exists already an impressive experimental data base
for exclusive reactions, which is continuously improved. A standard approach is either con-
frontation of model predictions [8] or least-squares fit [9] to this data. The latter approach,
formulated in Mellin space, is analogous to the well-established global fitting framework of
parton distribution functions (PDFs). Complementary information on moments of GPDs
comes from lattice QCD [10].

However, compared to the situation for PDFs, extracting GPDs from data is a much
more intricate task and model ambiguities are much larger. For instance, the theoretically
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cleanest process, used for the determination of GPDs, is deeply virtual Compton scattering
(DVCS), γ∗p → γp, which can be parametrized by twelve Compton form factors (CFFs).
At leading order in the (inverse) photon virtuality squared 1/Q2 they are expressed as
convolutions of GPDs with perturbatively calculable coefficient functions. At leading order
in the QCD coupling constant and for one of the CFFs, H, we have

H(xB, t,Q
2)

LO
=

∫ 1

−1

dx

[
1

ξ − x− iǫ
−

1

ξ + x− iǫ

]
H(x, ξ, t,Q2) , (1)

where ξ = xB/(2 − xB), xB is Bjorken’s scaling variable, t is the momentum transfer
squared, and H is the GPD. Formulae such as (1) suggest to parametrize GPDs at some
input scale Q2

0, to employ QCD evolution equations to determine the GPDs at the desired
scale Q2, then to make the momentum fraction convolution to obtain CFFs that are used
to calculate measured cross-sections and asymmetries via known formulae [11, 12], and,
finally, to confront the result with experimental data by means of the least-squares method.
Due to the facts that GPDs cannot be fully constrained even by ideal data and that they
depend at the input scale Q2

0 on three variables, the space of possible functions, although
restricted by GPD constraints, is huge. As a result, the theoretical uncertainty induced
by the choice of the fitting model is much more serious than in the PDF case, where the
model functions depend at the input scale only on one variable, namely, the longitudinal
momentum fraction x. The fact that exclusive data is typically much less precise than
inclusive one exacerbates the situation further.

In this paper we explore an alternative approach, in which neural networks are used in
place of specific models. This essentially eliminates the problem of model dependence and,
as an additional advantage, facilitates a convenient method to propagate uncertainties from
experimental measurements to the final result. In the context of nucleon structure studies,
neural networks have already been successfully applied to extract PDFs by the NNPDF
group [13–15] and to parametrize electromagnetic form factors [16]. Similarly, they have
been employed for parametrization of spectral function of hadronic tau decays [17]. In the
case of GPDs, because of the abovementioned reasons we expect that the advantages of
this method should be even more pronounced.

While our long-term goal are global fits of GPDs, the data presently available allows
only a less ambitious analysis, namely the fit of the dominant CFF H using neural net-
works1. This reduces the mathematical complexity of the problem (increased also by GPD
constraints), while still retaining the relevance for the study of hadron structure.

The imaginary part of the CFF (1) is at leading order

1

π
ImH(xB =

2ξ

1 + ξ
, t,Q2)

LO
= H(x, ξ = x, t,Q2)−H(−x, ξ = x, t,Q2) , (2)

and so, although we consider only extraction of CFFs, ImH provides us with direct infor-
mation about the shape of GPD H on the cross-over line ξ = x. Moreover, a “dispersion

1Note that neural network analysis of deeply inelastic scattering data also started by fitting directly
the structure function F2 [18, 19]
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relation” [20–23]

ReH(xB, t,Q
2)

LO
= PV

∫ 1

0

dx
2x

ξ2 − x2

[
H(x, x, t,Q2)−H(−x, x, t,Q2)

]
− C(t,Q2) , (3)

can then be used as a sum rule to pin down this GPD outside of the kinematically accessible
region. Extraction of CFFs from DVCS data in a largely model-independent way was also
performed in [24–27]. In contrast to the work presented here, these analyses are local in
the sense that they extract values of CFFs separately at each measured kinematic point.
We emphasize that in Refs. [24–26] the systematic uncertainties, induced by other non-
dominant CFFs, were explored with model-dependent constraints for the four twist-two
related CFFs.

The paper is organized as follows. In Section 2 we describe salient features of the
neural network approach. In Section 3 we present fits to a well-defined subset of available
DVCS data, so that we could study neural network method in a controlled situation, free
of subtleties which surface in many fits involving data coming from a number of different
experiments. In particular, we used HERMES measurements of two observables, beam
spin asymmetry (BSA) and beam charge asymmetry (BCA) in leptoproduction of a real
proton (of which DVCS is a subprocess) [28]. This data belongs to a kinematic region where
these two asymmetries are determined essentially by the imaginary and the real part of the
Compton form factor H (1), respectively, and where dependence of H on Q2 is weak and,
therefore, can be neglected for simplicity. The neural network parameterization of CFF H
is then used to make a prediction for another observable, namely, the beam charge-spin
asymmetry in the kinematic region to be explored by the COMPASS II experiment [29].
In Section 4 we place particular emphasis on the determination of uncertainties. To do so
we fit a simple model using the standard least-squares method and compare the resulting
uncertainties with those obtained by neural networks. Section 5 contains conclusions.

2 Fitting data with neural networks

Neural networks have been applied to a variety of tasks, including optimization problems.
One of the main attractions is their apparent ability to mimic the behavior of human
brain: with their multi-connectedness and parallel processing of information they can be
trained to perform relatively complex classification and pattern recognition tasks. To this
end many kinds of neural networks and corresponding “learning” algorithms have been
developed, see, e.g., [30]. In our study, we used one of the most popular neural network
types, known as multilayer perceptron. Schematically shown on Fig. 1, it is a mathematical
structure consisting of a number of interconnected “neurons” organized in several layers.
Each neuron has several inputs and one output. The value at the output is given as a
function f(

∑
j wjxj) of a sum of values at inputs x1, x2, · · · , each weighted by a a certain

number wj. Consequently, a multilayer perceptron is defined by its architecture (number of
layers and number of neurons in each layer), by the values of its weights, and by the shape
of its activation function f(x). Again somewhat inspired by biological neuron properties,
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Figure 1: A neural network (multilayer perceptron with 2-5-2 architecture) parametrization
of the complex-valued CFF H(xB, t). Each blob symbolizes a neuron and thickness of arrows
represents the strengths of weights wj . (Smaller blobs with no input are so-called biases —
they improve the network’s properties [30].)

the activation function is often taken as a nonlinear function with saturating properties
for large and small values of its argument. We employed a very popular logistic sigmoid
function

f(x) = 1/(1 + exp(−x))

for neurons in inner (“hidden”) layer(s), while for input and output layers we used the
identity function2 f(x) = x. By iterating over the following steps the network is then
trained, i.e., it “learns” how to describe a certain set of data points:

1. Kinematic values (two in our case: xB and t) of the first data point are presented to
two input-layer neurons

2. These values are then propagated through the network according to weights and
activation functions. In the first iteration, weights are set to some random value.

3. As a result, the network produces some resulting values of output in its output-layer
neurons. Here we have two: ImH and ReH. Obviously, after the first iteration,
these will be some random functions of the input kinematic values: ImH(xB, t) and
ReH(xB, t).

2To increase representational power of a given network, one can also use sigmoid function in input
and output layers, but then input and output values have to be rescaled so that they don’t fall into
the saturation regions of the activation function. For our relatively simple case the identity function is
sufficient.
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4. Using these values of CFF(s), the observable(s) corresponding to the first data point
is (are) calculated and it is (they are) compared to actually measured value(s), with
squared error used for building the standard χ2 function.

5. The obtained error is then used to modify the network: It is, possibly weighted
by the inverse uncertainty of the experimental measurement, propagated backwards
through the layers of the network and each weight is adjusted such that this error is
decreased. The concrete algorithm for this weight adjustment is discussed at the end
of this section.

6. This procedure is then repeated with the next data point, until the whole training
set is exhausted.

This sequence of steps (called training epoch) is repeated until the network is capable to
describe experimental data with a sufficient accuracy — the precise stopping criterion is
specified below.

From what is said it should be clear that a neural network is nothing more but a com-
plicated non-linear multi-parameter function and that the training procedure is equivalent
to the least-squares fitting of this function to data. The actual power of the approach
stems from the following:

• A neural network serves as unbiased interpolating function. Its complicated depen-
dence on parameters enables it to approximate any smooth function with comparable
ease3.

• Updating the weights of a given neuron by back-propagation of error uses only values
and gradients of activation functions in the immediate network neighborhood. In this
sense the training process is local and it is algorithmically efficient.

• This approach enables the following convenient method for propagation of experimen-
tal uncertainties (and even their correlations) into the final result: In our application
a “replica data set” is interpolated. It is obtained from original data by generating
random artificial data points using Gaussian probability distribution with a width
defined by the error bar of experimental measurements. Taking a large number Nrep

of such replicas, the resulting family of trained neural networks H(1), . . . ,H(Nrep) de-
fines a probability distribution of the represented CFF H(xB, t) and of any functional
F [H] thereof. Thus, the mean value of such a functional and its variance are [31, 18]

〈
F [H]

〉
=

1

Nrep

Nrep∑

k=1

F [H(k)] , (4)

(
∆F [H]

)2

=
〈
F [H]2

〉
−

〈
F [H]

〉2

. (5)

3This flexibility of a neural network is formalized in the universal approximation theorem [30]. Roughly
spoken, this theorem states that any continuous multivariate function f(x1, x2, . . . ) can be arbitrary accu-
rately approximated by a multilayer perceptron. Strictly spoken, one hidden layer is enough for this, but
networks with more hidden layers can have fewer neurons and/or can be more efficiently trained.
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Figure 2: Typical progress of neural network training: the error for the description of
training data (dashed) is monotonously decreasing, while the error for the validation data
(solid) increases when the neural network is overfitted. In the plotted example one would
use the network obtained after 500-700 training epochs as the final result

For details of this “Monte Carlo” procedure see Refs. [18, 32] and note that this
is a general method of error propagation, which is not related to neural networks
themselves and can be used also for error propagation in standard least-squares fitting
of model functions to data.

The power of neural networks to approximate any continuous function implies also the
danger of overfitting the data (also known as overtraining). Namely, after a certain number
of iterations the network will not only describe the general dependence of observables on
kinematic variables, but will also adjust to the random fluctuations of data. This unwanted
behavior is prevented by the cross-validation procedure in which initial data is divided into
two sets: training set and validation set. Then performance of the network is continuously
checked on the validation set. Since this set is not used for training, after the onset
of overfitting, the error of the network’s description of validation sets will increase, see
Fig. 2. This is the moment at which training is stopped.

For more informations on neural networks we refer the reader to the vast literature
on the subject, e.g. [30], while the PhD thesis [32] is a good reference for the particular
approach used also in this work. In the remainder of this section, we specify some details
about the neural networks we used.

In our study we employed the PyBrain software library for neural networks [33]. This
choice was motivated by (i) the great flexibility of this library, which allows to explore
various types of neural networks, and (ii) it being written in the Python programming
language, such that it was easy to link with our already existing Python code for DVCS
analysis. Like almost every other freely available neural network software (at least to our
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knowledge), PyBrain expects that the network output is directly compared to training
data samples for error calculation. In our case, however, the network output must be
transformed, i.e., the DVCS observables must be calculated from ImH and ReH (see step
no. 4 in the training procedure described above), before the error can be evaluated. For
this, we had to make some modifications to the PyBrain software.

Concerning the network architecture, the number of neurons in the input and output
layers were fixed by the problem at hand to be two, see Fig. 1. To fix the number of
hidden layers and their neurons, one has to consider a trade-off between two requirements:
the number of neurons in the hidden layer(s) must be large enough to ensure sufficient
expressive power of the network but must not be too large with respect to the number
of available data points, otherwise the training will become difficult. In our case, it is
already known from previous studies, e.g. [9], that CFF H is a reasonably well-behaved
function. Thus, since we used a relatively small sample of few tens of data points, see next
section, just one hidden layer with about ten neurons proved to be sufficient. The specific
results presented in this paper were obtained by training series of neural networks, with
13 neurons in the hidden layer each. We checked that results do not change appreciably if
a neuron is added or removed from the hidden layer, which is one of the standard tests in
neural network applications.

There are various training algorithms available for updating the network weights, from
a simple back-propagation algorithm [30] to genetic algorithms like the one used by the
NNPDF group [32, 14]. After some experimentation we ended up using the so called
resilient back-propagation algorithm [34]. This algorithm is a modification of the usual
back-propagation algorithm: only the signs of the partial derivatives of the error function,
and not their magnitude are taken into account. Resilient back-propagation is known to be
very reliable, fast and insensitive to parameters of the network and of the learning process.
More sophisticated algorithms are needed when correlations are included in the χ2 error
function or in cases for which the connection between the network output and the experi-
mental observables is very non-linear. The latter would, e.g. be the case when the network
output would represent GPDs rather than CFFs, so that the connection would involve
convolutions with QCD evolution operators and hard-scattering coefficient functions. Let
us finally note that besides perceptrons, there are attempts to apply other kinds of neural
networks in nucleon structure studies, such as self-organizing maps [35].

3 Example fit to data

For the first application, to assess the power of the neural network approach, we took just
two sets of measurements of leptoproduction of a real photon by scattering leptons off
unpolarized protons. One set consisted of 18 measurements of the first sine harmonic Asinφ

LU
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of the beam spin asymmetry (BSA)4

BSA ≡
dσe↑ − dσe↓

dσe↑ + dσe↓
∼ Asinφ

LU sin φ , (6)

(where φ is the azimuthal angle in the so-called Trento convention), while in the other
set there were 18 measurements of the first cosine harmonic Acosφ

C of the beam charge
asymmetry (BCA)

BCA ≡
dσe+ − dσe−

dσe+ + dσe−
∼ Acos 0φ

C + Acos φ
C cos φ . (7)

Both sets cover identical kinematic regions

0.05 < xB < 0.24 , 0.02 < −t/GeV2 < 0.46 , and 1.2 < Q2/GeV2 < 6.11 .

As mentioned in the Introduction, we assumed that QCD evolution effects can be neglected,
i.e., that CFFs are independent of Q2. Furthermore, it has been shown that the hypothesis
of CFF H dominance leads to a successful description of this data [9] and so we relied on
this assumption (with the understanding that it is only an approximation which should be
given up, once sufficiently precise data is available). Thus, at present, just a single CFF
H(xB, t), or two real-valued functions ImH(xB, t) and ReH(xB, t), are extracted from
data by our neural networks.

A comment about the relation between ImH and ReH is in order. Analytic properties
of CFF H relate these two functions via a “dispersion relation”, which reads in twist-two
approximation:

ReH(x′

B =
2ξ

1 + ξ
, t) = PV

1

π

∫ 1

0

dx
2x

ξ2 − x2
ImH(xB =

2x

1 + x
, t)− C(t) , (8)

cf. Eqs. (2) and (3). As discussed in the Introduction, this could be used to simplify the
fitting function set from

{ImH(xB, t),ReH(xB, t)} to {ImH(xB, t), C(t)}.

However, for two reasons we treat here the imaginary and real part of CFF H as inde-
pendent quantities. First, assumption of “dispersion relation” (8) by itself introduces a
theoretical bias we want to avoid. In Section 4 we will see that model-dependent least-
squares fits that are based on the “dispersion relation” (8) link, e.g., assumptions about
the low x behaviour of ImH to that of ReH which might lead to rather misleading results.
Instead, neural networks which do not make use of (8) give large uncertainties for both,
which is probably more realistic.

4Actually, what was measured is the so-called charge-difference BSA, see [28] for definition, but in the
leading twist approximation this is equal to the simple BSA (6) and we disregard the difference of these
two observables in this paper.
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Figure 3: First cosine harmonic of beam charge asymmetry Acosφ
C (7) and first sine har-

monic of beam spin asymmetry Asinφ
LU (6) resulting from neural network fit (hatched areas),

shown together with data [28], used for training. Two model fits, KM09a (solid) and KM09b
(dashed) from [9] are also shown for comparison.

Second, to implement the “dispersion relation” approach in a neural network framework
one would need to either (i) disconnect topologically the network output representing C(t)
from the input representing xB, or (ii) to create a separate neural network with one input
and one output (1–1) for C(t) and train it together with the two-inputs-one-output (2–1)
network representing ImH(xB, t). Certainly, taking in future all available fixed target data
into account, such a strategy might be feasible, and if so, would allow to get rid of the
H dominance hypothesis and might thus improve the phenomenological value of the final
result.

Using the procedure described in Section 2, we created 50 replicas from the set of 36
measured data points, which were randomly divided into a training set of 25 points and
a validation set of 11 points. Then we trained one neural network on each training set,
monitoring progress on the validation set, as in Fig. 2. Training was performed either
until the onset of overlearning, or for 2000 epochs, whichever came first. We ended up
with 50 neural networks, each representing CFF H. Most of the neural networks fit the
original data set quite well (44 of our 50 neural networks have χ2 less than the number of
data points, 36), with few poorer fits as expected due to the stochastic nature of the set
of data replicas.

Using this set of neural networks as a probability distribution in a functional space
of all H one can predict any function of H, together with its uncertainty, using (4) and
(5). As a consistency check we plot in Fig. 3 the result for the very observables that are
used for training of networks. We observe that uncertainties of measurements have been
correctly propagated into the corresponding uncertainties given by neural networks. This
is particularly visible in the first two panels of Fig. 3, where uncertainties of both data
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Figure 4: Predictions of neural network fits for beam charge-spin asymmetry (9) in COM-
PASS II kinematics (Eµ = 160GeV, φ = 0) (hatched areas). Two model fits, KM09a (solid)
and KM09b (dashed) from [9] are also shown for comparison.

and neural networks increase with |t| in the same fashion.
Error bands here and in other figures denote the uncertainty that corresponds to one

standard deviation (one sigma). We checked for departures from a Gaussian distribution
of network results and found them to be small in the region where data is available. This
means that a one-sigma error band corresponds indeed to a 68% confidence level. However,
as observed also by the NNPDF group [14], in the extrapolation region, where there is
no data, departures from Gaussian distribution are significant, and 68% confidence level
regions are generally smaller than the one-sigma regions we plot.

As an example of a proper prediction coming from our analysis we plot in Fig. 4 the
beam charge-spin asymmetry (BCSA),

BCSA ≡
dσµ↓+ − dσµ↑−

dσµ↓+ + dσµ↑−

(9)

as a function of t, for several kinematic points that are characteristic for the COMPASS
II experiment (where the muon is taken to be massless and the polarization is set equal
to 0.8). This experiment was chosen because its kinematics overlaps with that of the
HERMES data used for neural network training. Hence these predictions represent partly
interpolation and partly extrapolation of HERMES data, thus testing this framework in a
nontrivial way.
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4 Comparison with model fits and assessment of un-

certainties

One of the main advantages of the neural network approach to hadron structure is that it
offers a convenient way to assess the uncertainties of non-perturbative functions (GPDs,
CFFs, PDFs, . . . ). Let us now emphasize this point further by making a comparison with
the common method in which one chooses some model and makes a least-squares fit of it
to the data. To quantify this comparison, we took a simple model of the CFF H and fitted
it to the very same data to which neural networks were trained.

We adopted a version of the model used in [9] for which the partonic decomposition of
ImH is:

ImH(xBj, t) = π

[(
2
4

9
+

1

9

)
Hval(ξ, ξ, t) +

2

9
Hsea(ξ, ξ, t)

]
. (10)

We parametrized the GPDs along the cross-over trajectory ξ = x as:

H(x, x, t) =
n r

1 + x

(
2x

1 + x

)
−α(t) (

1− x

1 + x

)b
1(

1− 1−x
1+x

t
M2

)p . (11)

Here 2−α(0) n is the normalization of PDF q(x) = H(x, 0, 0) from PDF fits, r is the skewness
ratio at small x (the ratio of a GPD at some point on the cross-over trajectory and the
corresponding PDF), α(t) is the “Regge trajectory”, b controls the large-x behavior, and
M and p control the t-dependence [36]. The parameters of the sea-quark GPD Hsea were
taken to be as in [9] (αsea(t) = 1.13 + 0.15 t/GeV2, nsea = 1.35, rsea = 1, bsea = 2,
(M sea)2 = 0.5GeV2, psea = 2). For the valence quark GPD Hval, we also fixed αval(t) =
0.43+0.85 t/GeV2, nval = 1.35, and pval = 1. This left rval, bval andMval as free parameters,
to be determined by the fit to the data. We obtained ReH from the “dispersion relation”
(8), treating the subtraction constant C as a fourth and final free parameter of the model5.

Fitting this model to the same 36 data points used for neural network fit, using the
well-known Minuit software package [37] for minimization of the χ2 function, resulted in
a good fit (χ2

0/n.d.o.f = 22.2/32) with parameter values

rval = 1.11 , bval = 1.79 , Mval = 0.51GeV , C = 2.25 . (12)

The uncertainty of the resulting fit is commonly determined by the so-called Hessian
method. The Hessian matrix is given by the second derivatives of χ2 with respect to
the model parameters ai at the minimum χ = χ0:

Hij =
∂2χ2

∂ai∂aj

∣∣∣∣
χ=χ0

. (13)

5We assume the subtraction constant in (8) to be t-independent, C(t) = C. This is motivated a posteriori
by the fact that such a simple model is good enough to fit the data. Additionally, when we parametrize
C(t) = 1/(1 − t/M2

C
)2, the parameter MC tends to be strongly correlated with other parameters of the

model, making error analysis, which is our main task, more difficult.

11



The uncertainty ∆f of the function f(ai) of these parameters, including the uncertainty
of the parameters themselves, is given by the error propagation formula

(∆f)2 = ∆χ2
∑

ij

∂f

∂ai
H−1

ij

∂f

∂aj
. (14)

In a textbook approach to statistics, one sigma uncertainty is obtained by taking ∆χ2 = 1
in this formula. However, there are several problems with this simple procedure. First,
χ2 tends to vary very differently in different directions of parameter space, yielding a
Hessian with large variations in the eigenvalue spectrum which might then imply numerical
difficulties. In our case, where eigenvalues vary over three orders of magnitude, the problem
was not so severe. However, in DVCS fits, involving more parameters, we have also observed
much stronger variations. To improve the reliability of the Hessian method, we followed
an iterative procedure [38] which allows to find natural directions in parameter space and
natural step sizes for the finite-difference calculation of the Hessian matrix. Second, it is
known that with global fits, i.e., when one combines data from several different experiments,
errors are not distributed in the expected way. Often, reasoning strictly within textbook
statistics, one would have to reject some data as incompatible either with itself (i.e., because
its χ2 is too large) or with other data sets (i.e., because likelihood curves poorly overlap).
This is mainly due to systematic errors which are not understood. Without entering further
into the discussion of this complex issue, we can follow the CTEQ procedure [39], where
∆χ2 in (14) is increased ad hoc to ∆χ2 = T 2 in order to accommodate all experimental
measurements used for fitting. The tolerance parameter T is determined by calculating
the average distance from the best fit along eigenvectors of the Hessian matrix at which
the model is still compatible with some particular experiment at some confidence level
(C.L.). In global PDF fits, with many data sets, values of T ∼ 5 − 10 are common, see
e.g. [40] for a recent review. Nevertheless, using this procedure, we arrived at a tolerance
T ≈ 1 (for 68% C.L.; CTEQ use 90%). We conclude that in our case with just two sets of
data, coming from the same experiment, there are no statistical inconsistencies and we can
actually use the textbook formula (14) with ∆χ2 = 1, which we did6. We note in passing
that we found that model parameters are significantly more constrained by the BCA than
by the BSA data.

We can now compare the model fit (12), taking also into account uncertainties calculated
by the procedure just described, with the neural network parameterization of the CFF
H. Both findings are displayed in Fig. 5, together with two models from [9], where
ImH (upper panels) and ReH (lower panels) are separately plotted. We notice several
interesting features:

• In the kinematic region of measured data (this is roughly the middle vertical third
of the left panels), there is a good agreement of values and uncertainties of neural
networks (ascending hatches) and model fit (descending hatches). This shows that

6Preliminary analysis taking all available data for DVCS on unpolarized target suggests that the toler-
ance T will have to be increased for a true global fit.
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Figure 5: Neural network extraction of ImH(xBj, t) and ReH(xBj, t) (ascending hatches)
from HERMES BCA and BSA [28] data compared with three model fits, one of which with
determined uncertainties (descending hatches).

both fitting methods correctly interpolate the data, and that two, quite different,
statistical methods used for determination of uncertainties are mutually consistent.

• As one starts to extrapolate the fitted CFF H outside of the data region (left and
right thirds of left panels and the whole of the right panels), the two methods predict
markedly different shapes and uncertainties for the CFFH. All model fits show effects
of theoretical bias by following the x−α functional behavior at small x and claiming
a small uncertainty there, whereas in neural network parameterizations it is obvious
that extrapolated functions are very unconstrained. This is particularly visible in the
right panels, illustrating the difficulty of a model-independent extrapolation towards
t = 0, which is a limit of particular interest for hadron structure studies.

• The model fit and the corresponding uncertainties (descending hatches) show the
effect of the dispersion relation integral constraint (8) — ImH is significantly con-
strained also outside of the data region. This is actually a welcome feature of the
dispersion relation fits, offering the opportunity to access nucleon structure in re-
gions not directly accessible in the experiment. However, its usefulness depends on
the extent to which the functional forms used are firmly established.
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• The model KM09b (dashed line), which was obtained in [9] by including additional
data, and, more importantly, by extending the model to include contributions of the
CFFs H̃ and Ẽ , disagrees for ReH with the other three fits. This emphasizes that
the assumed H dominance might substantially affect the quality of our results.

5 Conclusions and outlook

Based on HERMES measurements of lepton scattering off unpolarized protons, a reaction
which should be dominated by the CFF H, we performed the first neural network analysis
of deeply virtual Compton scattering data and obtained a neural network representation of
the CFF H. This was then used to make a prediction for the beam charge-spin asymmetry,
measurable at COMPASS II. The Monte Carlo method of propagation of experimental
errors enabled us to determine also the uncertainty of the resulting CFF, and we have found
that (in the kinematic region where data is available) it agrees well with the uncertainty
determined by model fits and standard statistical procedures. However, neural networks
combined with Monte Carlo error propagation are a conceptually cleaner and practically
simpler method. The propagation of uncertainty from experimental data is intrinsic. Most
importantly, this provides essentially a model-independent approach to determine CFFs
and GPDs.

One could argue that the neural network approach, just because it is essentially model-
independent, does nothing more than faithfully representing the information available in
the experimental data by universal objects: CFFs (as presented here) or GPDs (yet to
be extracted by this approach). This is valuable in itself but can also be considered
as a stepping stone towards improved model-dependent studies, that in principle offer
the advantage that our detailed theoretical and phenomenological understanding of QCD
dynamics can be taken into account. Such a two-step procedure would be quite natural as
models can be more directly compared to neural-network determined CFFs or GPDs than
to actual measured observables.

Finally, let us stress that we consider the presented neural network study only as a first
step in the analysis of DVCS data. The problem here is that the number of observables
measured at a given kinematic point is in practice not sufficient to pin down all twelve
CFFs, some of which are kinematically suppressed.
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