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Abstract

We report on the status of the phenomenological access of generalized parton distributions from
photon and meson electroproduction off proton. Thereby, weemphasize the role of HERMES
data for deeply virtual Compton scattering, which allows usto map various asymmetries into the
space of Compton form factors.

1 Introduction

Motivated by the aim of understanding the decomposition of the nucleon spin and resolving the trans-
verse distribution of partons, large experimental effort has been expended to measure various observ-
ables in the exclusive electroproduction of photons and mesons at medium and high center-of-mass
energies, which have taken place at HERA and Jefferson Lab. Thereby, deeply virtual Compton scat-
tering process (DVCS) is viewed as a golden channel, allowing a clean access to generalized parton
distributions (GPDs). Besides the DVCS process the Bethe-Heitler (BH) bremstrahlungs process has
the same initial and final states as DVCS (ep → epγ). Since the BH amplitude is exactly known to
leading order accuracy in the electromagnetic fine structure constantαem, it may serve as a reference
for the DVCS amplitude. At fixed target kinematics one utilizes the fact that the large BH contri-
bution in the interference term amplifies the contribution from the more interesting DVCS process.
This gives access to linear combinations of Compton form factors (CFFs), allowing to extract both
their modulus and the phase. In collider kinematics the DVCSamplitude overwhelms the BH one,
however, also here one may access the interference term.

On the theoretical side the access to GPDs from deeply virtual meson production (DVMP) and
DVCS, i.e.,

γ∗L(q1) p(p1, s1) → N(p2)M(q2) and γ∗(q1) p(p1, s1) → p(p2) γ(q2), (1)

measurements relies on factorization theorems [1, 2], which are perturbatively proven to leading order
accuracy in1/Q2. These theorems state that the longitudinal helicity amplitude for DVMP (transverse
helicity amplitude for DVCS) factorizes in GPDs and meson distribution amplitudes (DAs) (final pho-
ton state in DVCS has a point-like coupling), which are process-independent non-perturbative func-
tions, and a hard scattering amplitude. They also state thatnon-factorizable final state interaction

∗Talk given by D.M. at the3rd Workshop on the QCD Structure of the Nucleon, 22-26 October 2012, Bilbao, Spain.
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is suppressed by (at least) an additional power1/Q. Furthermore, the hard amplitude can be sys-
tematically calculated as expansion w.r.t. QCD couplingαs, where the process-independent collinear
singularities are factorized out and dress the bare GPDs andeventually also DAs. The theoretical
framework for the processes of interest has been set up for some time to next-to-leading order (NLO)
accuracy1, see references in [3].

The present phenomenological challenge is to describe these exclusive measurements in terms of
GPDs. In Sect. 2 we introduce the cross sections in terms of transition and Compton form factors
and we shortly report on the status of the phenomenology. In Sect. 3 we consider the extraction of
CFFs at given kinematical points from the HERMES measurements as a map of random variables
and from the regression approach and use the HERMES data to access CFFs by least squares fitting.
We also present a global GPD model fit that additionally includes HERA collider and Jefferson Lab
measurements. Finally, we summarize.

2 GPDs from helicity dependent transition and Compton form factors

In DVMP only the (polarized) longitudinal photoproductioncross section

dσγ∗

L p→M N

dtdϕ
=

2παem

Q4

√
1 +

4x2
BM

2
N

Q2

x2B
1− xB

{
Cunp(FM ,F∗

M ) + Λ sin(ϕ) CTP(FM ,F∗
M )
}
, (2)

for a transversally polarized proton allows to measure longitudinal helicity transition form factors
(TFFs)FM that are systematically factorizable in GPDs and meson DAs.HereΛ is the polarizability
of the polarized proton,ϕ describes the direction of the transverse polarization vector, xB is the
Bjorken variable, andQ2 = −q21. In these processes the produced mesonM serves as a flavor and
parity filter. We may define parity even TFFs (e.g., longitudinally polarized vector mesonsρ, ω, φ)
and parity odd TFFs (e.g., pseudo scalar mesonsπ, η) in terms of Dirac bilinears:

ǫµL〈MN |jµ|N〉 =





u(p2, s2)

[
6 q
P ·q

HM +
iσαβ qα∆β

2P ·qMN
EM

]
u(p1, s1) (even parity)

u(p2, s2)

[
6 q γ5
P ·q

H̃M + γ5 q·∆
2P ·qMN

ẼM

]
u(p1, s1) (odd parity)

, (3)

where∆µ = pµ2 − pµ1 = qµ1 − qµ2 is the momentum transfer in thet-channel (t ≡ ∆2) andqµ/P · q =
(qµ1 + qµ2 )/(q1 + q2) · (p1 + p2) is a crossing-symmetric auxiliary vector. The unpolarizedpart in (2)
depends on the squared moduli|HM − x2B · · · EM |2 and|EM |2 (same for parity odd case), while the
transverse part is proportional toℑmHME∗

M (orℑmH̃M Ẽ∗
M ), i.e., to the phase difference ofHM and

EM . Based on thet-channel exchange picture, various models have been proposed and are utilized to
describe DVMP processes.

In DVCS only the GPDs enter and one can access in principle both the modulus and phase of all
twelve CFFs (or helicity amplitudes). However, the extraction of these information requires a com-
plete measurement of cross sections or asymmetries with allpossible polarization options. Thereby,
the fivefold electroproduction cross section,

d5σ

dxBdQ2dtdφdϕ
=

α3
emxBy

2

16π2Q4

√
1 +

4x2
BM

2
p

Q2

[
|TBH|

2

e6
±

I(F)

e6
+

|TDVCS|
2(F∗,F)

e6

]
, (4)

1If one describes only DVCS, no essential improvement will bereached by going from LO to NLO, since this can be
absorbed by redefinition of convention-dependent GPDs. Contrarily, in a global analysis of both DVMP and DVCS it is
important to utilize the NLO framework.
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1 2 3 4 5 6 7 8 9 10 11 12
0.03 0.1 0.2 0.42 0.1 0.1 0.13 0.2 0.08 0.1 0.13 0.19
0.08 0.1 0.11 0.12 0.05 0.08 0.12 0.2 0.06 0.08 0.11 0.17
1.9 2.5 2.9 3.5 1.5 2.2 3.1 5.0 1.2 1.9 2.8 4.9

TABLE 1: Kinematical mean values for−t [GeV2] (second row),xB (third row), andQ2 [GeV2] (forth
row) of three times four HERMESbins from ref. [14], labeled as#1, · · · ,#12 (first row).

consists of the BH squared term, the interference termI (linear in CFFs), which is charge odd, and
the DVCS squared term (bilinear form of CFFs), wherey is the fractional electron energy loss andφ
an azimuthal angle. The functional form of both the interference term and DVCS amplitude squared
is known as function of twelve complex valued helicity dependent CFFsF++, F0+, andF−+, where
F ∈ {H, E , H̃, Ẽ} and subscripts label the helicities of initial (+, 0,−) and final (+,−) state photons
[4]. To LO accuracy the twist-two associated CFFs are given by the charge even quark GPDs

F++ ≈ F
LO
=

∑

q=u,d,s,···

∫ 1

−1
dx

e2q
ξ − x− iǫ

F q(+)
, ξ ≃

xB
2− xB

, (5)

whereeq are the fractional quark charges.
DVCS data for unpolarized proton target has been analyzed inglobal fits [5]. In particular in

the small-xB region flexible GPD models are needed and are used to control both the size and the
evolution flow of Compton form factors (CFFs). Thereby, sea quark and gluon GPDs were directly
parameterized in terms of (conformal) GPD moments rather than in momentum fraction representa-
tion. For the analyzes of fixed target measurements theQ2 evolution can be neglected. Thus, instead
of the LO convolution formulae (5) we can equivalently employ the dispersion relations where one can
directly model the imaginary part of valence GPDs on the cross-over line as function ofxB andt and
possible subtraction constants as function oft. Apart from some earlier model dependent estimates
as well as more recent data descriptions forπ+ [6] and light vector mesons [7] at LO accuracy, the
collinear framework has still not been confronted with the increasing amount of experimental DVMP
data. We would like to emphasize that a GPD inspired hand-bagmodel approach (or two partont-
channel exchange picture) has been used to confront GPD models with DVMP measurements [8–10].
Here, GPDs are based on the popular Radyushkin ansatz [11] and NLO parton distribution function
parameterizations with variableQ2-dependence. Furthermore, utilizing this model for the dominant
GPDH reproduces at LO the collider DVCS data [7] and provides the typical predictions for fixed
target DVCS data that are known from models based on the Radyushkin ansatz [12]. Very similar re-
sults are obtained if one utilizes the complete GPD content of this model for polarized proton DVCS
data [13].

3 CFFs from HERMES measurements and global DVCS fits

The elementary problem in analyzing DVCS (and also DVMP) data is that the number of CFFs (TFFs),
times two because they are complex quantities, is usually larger than the number of observables at a
given kinematical point. One must thus rely on model assumptions or hypotheses which means that,
independently of the applied method or framework, a theoretical bias cannot be avoided in analyzing
the present available world data set. Fortunately, the DVCSexperiments at HERMEShad both electron
and positron beams available and is currently the experiment that has delivered the most complete set
of DVCS asymmetries in twelve kinematical bins, see Table 1.These data can be locally analyzed by
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FIGURE 1: CFFs from a linearized (circles, shifted to the left) and aone-to-one map (stars) of eight twist-
two dominated charge odd asymmetries as well as from a least squares fit (triangles, shifted to the right)
to fourteen twist-two related observables for each of 12 HERMESbins.

regression methods [15] or simply mapped into the space of CFFs [16].
Let us explain for a spin-zero target, where we have only three CFFsH++, H0+, andH−+, that

asymmetry measurements can be mapped to CFFs, however,two such maps exist. As for HERMES
data we consider the second and third harmonics compatible with zero, which suggest that the photon
helicity flip CFFs, associated with partonic twist-three and transversity processes, can be neglected.
We relate the first harmonics of the charge odd beam spin asymmetry and the charge asymmetry to
the imaginary part and real part of twist-two associated CFFH ≈ H++ by two linearized equations

A
sin(1φ)
LU,I ≈ Nc−1

ℑmℑmH and A
cos(1φ)
C ≈ Nc−1

ℜeℜeH , (6)

where the coefficients are calculated from the theoretical expressions

c−1
ℑm =

∂A
sin(1φ)
LU,I

∂ℑmH

∣∣∣∣∣
F=0

and c−1
ℜe =

∂A
cos(1φ)
C

∂ℜeH

∣∣∣∣∣
F=0

. (7)

In this procedure, we set the DVCS-squared term in the denominator to zero which, however, appears
in the normalization factorN . To a good approximation, this overall factor can be also expressed by
the ratio of the BH and DVCS cross sections

0 . N(A) ≈

∫ π

−π
dφw(φ)dσBH(φ)∫ π

−π
dφw(φ) [dσBH(φ) + dσDVCS(φ)]

=
1

1 + k
4 |H(A)|2

. 1 , (8)
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FIGURE 2: Fits to harmonics of asymmetries of scattering on anunpolarizedtarget. Black dots are
HERMESdata with systematic errors added in quadrature. Local fits in two different scenarios are shown
as red diamonds (fit toℑmH andℜeE) and blue pluses (fit toℑmH, ℜeH, andℑmH̃), slightly displaced
to the right for legibility. For comparison, we also show theresult of a global fit to world DVCS data as a
green solid line.

wherek is a known kinematical factor. Since this overall factor depends on|H|, it can be equivalently
viewed as a function of the asymmetries and ofN . Plugging the solution

ℑmH =
cℑm

N(A)
A

sin(1φ)
LU,I and ℜeH =

cℜe

N(A)
A

cos(1φ)
C , (9)

into (8) yields a cubic equation inN that hastwo non-trivial solutions:

N(A) ≈
1

2

(
1±

√
1− k c2ℑm

(
A

sin(1φ)
LU,I

)2
− k c2ℜe

(
A

cos(1φ)
C

)2
)
. (10)

In HERMES kinematics the unpolarized BH cross section overwhelms the DVCS one. Hence, we
take the solution with the positive root which satisfies the conditionN(A = 0) = 1 2. Finally, for
normally distributed random variables we can propagate thevariances in the known manner rather
than discuss the map of probability distributions.

In our analyzes we employ only twist-two dominated asymmetries from the final set of DVCS
off-the-proton data from the HERMES collaboration extracted using a missing-mass event selection
method [14, 17–19], which are used to extract the four twist-two associated CFFs{H, E , H̃, E ≈
xBẼ/(2 − xB)}. To find the one-to-one map for the BH dominated scenario, we numerically solve

2The solution (10) with the negative root satisfies the boundary conditionN(A = 0) = 0 and it is the one to take if the
unpolarized DVCS cross section is larger than the BH one.
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eight quadratic equations for the following four single spin and charge as well as double spin asym-
metries,




A
sin(1φ)
LU,I

A
sin(1φ)
UL,+

A
sin(ϕ) cos(1φ)
UT,I

A
cos(ϕ) sin(1φ)
UT,I




⇒ ℑm




H

H̃
E

E


 ,




A
cos(1φ)
C

A
cos(1φ)
LL,+

A
sin(ϕ) sin(1φ)
LT,I

A
cos(ϕ) cos(1φ)
LT,I




⇒ ℜe




H

H̃
E

E


 . (11)

The predictions from our one-to-one map for three charge oddcos(0φ) harmonicsAcos(1φ)
C ,Asin(ϕ) sin(1φ)

LT,I ,

andAcos(ϕ) cos(1φ)
LT,I , which are correlated with thecosφ harmonics, the charge even harmonicsA

sin(ϕ) cos(0φ)
UT,DVCS ,

A
cos(ϕ) cos(0φ)
LT,BH+DVCS, as well as theAcos(0φ)

LL,+ harmonic, which is dominated by the BH squared term, are con-
sistent with the HERMES measurements. In Fig. 1 we show the resulting CFFs from the one-to-one
map (stars), a linearized map (circles), and a least square fit (triangles) to all fourteen asymmetries.
The results are in general consistent, however, in bin #3 and#8 the fitting routine picked up the DVCS
dominated solution rather the BH one. For #3 we cured this by constrainingℜeE , which yields in
return smaller error bars for other sub-CFFs. As one can see only ℑmH significantly differs from
zero whileℜeH and alsoℑmH̃ are compatible with zero and well constrained. All other sub-CFFs
are rather noisy and compatible with zero, too.

We also confronted our model ansatz from [5], designed for the extraction of the dominant CFF
H from unpolarized proton DVCS data, with the world DVCS data set. The resultingχ/d.o.f. ≈ 1.6
fit is strictly speaking not a good fit, but it is acceptable fora global fit to data coming from such a
variety of experiments and observables. In particular tension is induced by the unpolarized HALL A
cross section measurement at four different−t values [20] with a ‘big’H̃ scenario and longitudinally
polarized proton spin asymmetry measurements. We also notethat in our modelℑmE is set to zero,
however, the transverse target HERMES data are well described, see Fig. 2.

4 Summary

In the first decade of systematic measurements of exclusive processes at medium and high energies
it has been shown that the GPD framework can be utilized to describe DVCS and even DVMP data.
It is expected that a global fit to all channels seems to be feasible within the collinear factorization
approach in which unobserved transverse degrees of freedomare integrated out. It also became obvi-
ous that GPDH is dominant, while an phenomenological access to GPDE cannot be reached from
present data. Such a goal requires high-luminosity experiments with dedicated detectors as planned
at JLAB@12GeV experiments and at a proposed Electron-Ion-Collider [21].
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[12] K. Kumerički et al., arXiv:1105.0899.
[13] P. Kroll, H. Moutarde and F. Sabatie, Eur. Phys. J.C 732278 (2013), [arXiv:1210.6975].
[14] HERMES, A. Airapetianet al., JHEP06, 066 (2008), [arXiv:0802.2499].
[15] M. Guidal, Phys. Lett.B693, 17 (2010), [arXiv:1005.4922].
[16] K. Kumericki, D. Müller and M. Murray, arXiv:1301.1230.
[17] HERMES, A. Airapetianet al., JHEP06, 019 (2010), [arXiv:1004.0177].
[18] HERMES, A. Airapetianet al., Phys. Lett.B704, 15 (2011), [arXiv:1106.2990].
[19] HERMES, A. Airapetianet al., JHEP1207, 032 (2012), [arXiv:1203.6287].
[20] Jefferson Lab Hall A, C. M. Camachoet al., Phys. Rev. Lett.97, 262002 (2006), [nucl-ex/0607029].
[21] A. Deshpandeet al., arXiv:1212.1701.

7

http://arxiv.org/abs/hep-ph/9611433
http://arxiv.org/abs/hep-ph/9801262
http://arxiv.org/abs/hep-ph/0504030
http://arxiv.org/abs/1212.6674
http://arxiv.org/abs/0904.0458
http://arxiv.org/abs/0906.2571
http://arxiv.org/abs/1112.2597
http://arxiv.org/abs/hep-ph/0501242
http://arxiv.org/abs/0708.3569
http://arxiv.org/abs/0906.0460
http://arxiv.org/abs/hep-ph/9704207
http://arxiv.org/abs/1105.0899
http://arxiv.org/abs/1210.6975
http://arxiv.org/abs/0802.2499
http://arxiv.org/abs/1005.4922
http://arxiv.org/abs/1301.1230
http://arxiv.org/abs/1004.0177
http://arxiv.org/abs/1106.2990
http://arxiv.org/abs/1203.6287
http://arxiv.org/abs/nucl-ex/0607029
http://arxiv.org/abs/1212.1701

	1 Introduction
	2 GPDs from helicity dependent transition and Compton form factors 
	3 CFFs from HERMES measurements and global DVCS fits
	4 Summary

