A brief Introduction

Introduction (Some Basics for ANN ML fitting)

* DVCS (Deeply Virtual Compton Scattering)

c(eN—eNy) =

DVCS

\/
+

O~

Bethe-Heitler (BH)

I
~ . T~

+

/O\/O\

X+& f\‘x—i
C_GPD_

P_= ~a P'=p+A

https://arxiv.org/pdf/1903.05742.pdf

e GitHub page : https://github.com/uva-spin/DNN-CFFs

* Steps:

Generate pseudodata with ‘known’ or ‘“True’ Compton Form Factors (CFFs)
Perform a ‘Fit’ and obtain the fitted CFFs and compare with the ‘True’ CFFs

https://github.com/uva-spin/DNN-CFFs

Local multivariate Inference (LMI) Method

Use F2VsPhi to make plot for F

Formalism N+2 nd |ayer Local fit with data set #1
0.7+ }\} }1
— —— 0.6 1 \ "II*
X —>‘ ReH . k\ i
0.4 ‘\“ "4
v — @ Ret | —
Architecture 2N 7
. . W| h N’ 0.11 S MJ::.- —
Kinematics th ‘N" layers —@ ReHt —_—) F 5 8 W0 U 0 20 0 B
Cross-section
Q2 — —@ C1/dvcs | ——
K -
>
phi >

» Inputs to the “Framework/Formalism” : Kinematics

» Output from the “Framework/Formalism”: Total Cross-Section (F)

» Compton Form Factors (CFFs) are considered as outputs (4) from a DNN that takes only ‘x’, ‘t’, and ‘Q2’ as
inputs.

» A typical data set can be represented as F vs phi while rest of the all kinematics are fixed.

» In the LMI method, we will use multiple data sets with a sparse kinematic phase-space to train the DNN.
See https://confluence.its.virginia.edu/display/twist/The+DNN+Extraction+Approach for more details.

https://confluence.its.virginia.edu/display/twist/The+DNN+Extraction+Approach

Local fit with data set #1

Data file structure (generic) F ol

. %
- e
LT - } Data

0 50 100 150 200 250 300 350

phi_x
Code Blame 3886 lines (3886 loc) : 507 KB Raw |'_|;| 2
Q. Search this file
#Set index k QQ x_b t phi_x F sigmaF varF ReH ReE ReHTilde dvcs
'S A 4

1.00000 0.00000 5.75000 1.82000 . 0.177200 7.50000 0.12424 0.00576 0.05000 -2.56442 221195 1.39564 0.03159

1.00000 1.00000 5.75000 1.8200 . -0.177200 22.50000 0.10715 0.00554 0.05000 -2.56442 221195 1.39564 0.03159

1.00000 2.00000 5.75000 1.82000 -0.17200 37.50000 0.10739 0.00517 0.05000 -2.56442 2.21195 1.39564 0.03159

1.00000 3.00000 5.75000 1.82000 -0.17200 52.50000 0.08818 0.00472 0.05000 -2.56442 2.21195 1.39564 0.03159

1NNNNN A NNNNN C 7CNnNN 107NNN N 179NN o7 CcNnNNN NnNnoc1n nNnNnaneg NnNncNnNN NceAann n N110cCc 1250CceA Nn Nn21co

Kinematics Compton Form Factors (CFFs)

Generate Pseudo-data

» Using the code ‘generate_pseudodata.py’ you can generate a single file of pseudodata
(as a .csv file) for a given set of CFFs and kinematic variables.
You can also vary the number of ‘phi’ bins as a user input in the code so it will
determine how many ‘rows’ (or data points) of ‘F’ (total cross-sections) with respect to
the angle (‘phi’).

» Similarly, you can generate multiple pseudodata files (.csv files), mimicking
multiple experiments.

» For the error/uncertainty of ‘F’ (cross-section), it is better to use values in the order of
real experimental measurements.

Generate replicas for the
statistical uncertainty

Data set #0

Data set #1

Replica #500 of data set #0

Replica #500 of data set #1 K

0.0 25 5.0 75 100 125 150 175

ReE

. Set0
w Setl
BN Set 2

-80

-60

-40 =20

ReHtilde

Training Process for LMI method

* In the training process, we need to ensure to feed all ‘data sets’
that cover a sparce kinematic range.

Note: If you use only one set of kinematics, then it is called the ‘Local Fit’
e Each data set file contains uncertainty column for ‘F’ (total cross-section)

* Generating replicas = sampling the ‘F’ value in each row within its
uncertainty range. Therefore, you can generate a replica set by
dynamically samply ‘F’ within ‘sigmaF’.

* Each ‘replica’ can be treated as a ‘job’ and each training of a replica
will provide a trained DNN model with evaluated training loss and
validation loss. Save those replica DNN models.

* Once you have multiple replica DNN-models, then you can evaluate the

statistical uncertainty from the replicas which propagated the uncertainty
to the CFFs from ‘sigmaF’.

Accuracy

@efini’cion:
How far away the mean of the replicas from the “truth” value ?

|True — Mean|

Accuracy = (1 —) 100%

True

Accuracy is a “quantity” that you can use to evaluate the “improvement” of your
architecture (or the configuration of hyperparamters that you ran with)

» You can calculate the “Accuracy” of each CFF for a given set
(kinematic-set)

» You can be creative to develop a code to compare Accuracy
of CFFs between kinematic sets, within the kinematics (with
respect to angle), etc. Think... and propose you ideas..

120 1

100

0.0 25 5.0 75 100 125 150 175

ReE

ReHtilde

140

120 A1

100 -

20 A

Precision

@efinition:
How precise the extracted CFF is (standard deviation of the CFFs from all replicas)?

N_replica

1
Precision = Z (Replica(i) — Mean)?
n=1

N_replicas

Precision is a “quantity” that you can use to evaluate the “improvement” in terms of
the statistical uncertainty of your architecture

(or the configuration of hyperparamters that you ran with)

120

100 1

0.0 25 5.0 75 100 125 150 175

ReE

ReHtilde

140

120 A1

100 -

20 A

Some resources

* |ntroduction from Professor Keller
https://confluence.its.virginia.edu/display/twist/Introduction

* Running jobs on Rivanna
https://confluence.its.virginia.edu/display/twist/Running+ANN+jobs+i
n+UVA-Rivanna

e Qverleaf
e Discord channel

* Running on ‘Shannon’ (with the options of parallelizing jobs)

https://confluence.its.virginia.edu/display/twist/Introduction
https://confluence.its.virginia.edu/display/twist/Running+ANN+jobs+in+UVA-Rivanna
https://confluence.its.virginia.edu/display/twist/Running+ANN+jobs+in+UVA-Rivanna

